# Bootstrapping quantum mechanics

### Tomáš Tuleja

Faculty of Mathematics and Physics, Charles University

August 2, 2024

### Contents

Introduction

Analytical methods

Numerical bootstrap

Conclusion

#### Introduction

- the conformal bootstrap is a numerical method which leverages symmetries and consistency conditions
- used initially in Conformal Field Theory (CFT) for example for estimating the 3d Ising model critical exponents
- we introduce and test the method on two simple quantum mechanical systems – the harmonic oscillator and the double-well – using our implementation in Python
- we estimate spectra of these systems and focus on the splitting of the ground state and the first excited state of the double-well
- obtained results are compared with the results gained analytically

# Analytical methods

## WKB approximation

- the approximation technique for a particular class of differential equations (in our case a time-independent Schrödinger equation)
- for a particle in a given potential, it will provide an ansatz for its wavefunction in classically allowed and forbidden regions

## Path integral approach

- using the path integral formalism to express important quantities (such as the canonical partition function) and approximating these path integrals
- approximating the (Euclidean) action of the path integral around its saddle points to the second order (one-loop approximation) or to the higher orders (n-loop approximations)



## Numerical bootstrap

- according to Oxford Learner's Dictionaries, bootstrap literally means an approach to creating something that uses the minimum amount of resources possible
- $\blacktriangleright$  we will use just symmetry of the potentials and three basic identities true for any operator  $\hat{O}$

$$\langle E|[\hat{H},\hat{O}]|E\rangle = \langle E|(\hat{H}\hat{O} - \hat{O}\hat{H})|E\rangle = E\langle E|\hat{O}|E\rangle - E\langle E|\hat{O}|E\rangle = 0 \quad (1)$$

$$\langle E|\hat{H}\hat{O}|E\rangle = E\langle E|\hat{O}|E\rangle$$
 (2)

$$\langle E|\hat{O}^{\dagger}\hat{O}|E\rangle = (\hat{O}|E\rangle)^{\dagger}(\hat{O}|E\rangle) \ge 0$$
 (3)

▶ using the first two identities on operators  $\hat{O} = \hat{x}^n$ ,  $n \in \mathbb{N} \cup \{0\}$  and  $\hat{O} = \hat{x}^m \hat{p}$ ,  $m \in \mathbb{N}$ , we can get rid of the momentum operators and have recursion relation for the coordinate moments

$$2mE\langle x^{m-1}\rangle + \frac{1}{4}m(m-1)(m-2)\langle x^{m-3}\rangle - \langle x^mV'(x)\rangle - 2m\langle x^{m-1}V(x)\rangle = 0$$
(4)

• using the last identity on operator  $\hat{O} = \sum_i c_i \hat{x}^i$ ,  $c_i \in \mathbb{C}$  we get the consistency condition

$$0 \le \langle O^{\dagger} O \rangle = \sum_{i,j} c_i^* \langle x^{i+j} \rangle c_j = \sum_{i,j} c_i^* M_{ij} c_j$$
 (5)

▶ the matrix M, which elements are  $M_{ij} = \langle x^{i+j} \rangle$ , is called a Hankel matrix

## Algorithmic structure

- 1. Select a subset of the search space  $X \subset S$ . For each point  $p = (E, \langle x \rangle, \ldots) \in X$  generate the moment sequence  $\{\langle x^m \rangle\}_0^{2K-2}$ .
- 2. From 2K-2 terms of this sequence for the point p construct the  $K \times K$  Hankel matrix  $M_{ij} = \langle x^{i+j} \rangle$ ,  $0 \le i, j \le K-1$ .
- 3. Check if the matrix M is positive definite. If it is not positive definite, then dismiss the point p. This way, we obtain the set of allowed points  $X_K \subseteq X$  at depth K.
- 4. Repeat this procedure starting with the set of points  $X_K$  and depth K+1.

## **Applications**

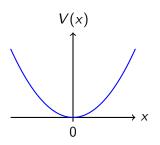


Figure 1: The harmonic oscillator potential  $V(x) = \frac{1}{2}x^2$ .

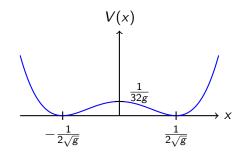


Figure 2: The double-well potential  $V(x) = \frac{g}{2} \left( x^2 - \frac{1}{4g} \right)^2, g > 0.$ 

### Harmonic oscillator

▶ using the recursion relation (4) for the harmonic oscillator potential  $V(\hat{x}) = \frac{1}{2}\hat{x}^2$  we get for  $s \in \{2, 3, 4, ...\}$ 

$$s\langle x^s\rangle = 2E(s-1)\langle x^{s-2}\rangle + \frac{1}{4}(s-1)(s-2)(s-3)\langle x^{s-4}\rangle$$
 (6)

- we have the recursion relation only for even moments, but the potential V(x) is even, which means that all odd moments are equal to zero and from normalization, we know that  $\langle x^0 \rangle = 1$
- ▶ the search space is one-dimensional  $S = \{E\}$

| n | En   | Bootstrapped energy                      | Relative difference from the exact value |
|---|------|------------------------------------------|------------------------------------------|
| 0 | 1/2  | $0.50 \pm 0.01$                          | $1.2 \cdot 10^{-50}$                     |
| 1 | 3/2  | 1.4999999999999999999999999999999999999  | $2.8 \cdot 10^{-18}$                     |
| 2 | 5/2  | $2.500000000000001 \pm 3 \cdot 10^{-15}$ | $4.6 \cdot 10^{-16}$                     |
| 3 | 7/2  | $3.4999999999998 \pm 4 \cdot 10^{-13}$   | $5.4 \cdot 10^{-14}$                     |
| 4 | 9/2  | $4.50000000001 \pm 3 \cdot 10^{-11}$     | $2.9 \cdot 10^{-12}$                     |
| 5 | 11/2 | $5.499999999 \pm 1 \cdot 10^{-9}$        | $1.0 \cdot 10^{-10}$                     |
| 6 | 13/2 | $6.50000001 \pm 4 \cdot 10^{-8}$         | $1.8 \cdot 10^{-9}$                      |
| 7 | 15/2 | $7.500000 \pm 1 \cdot 10^{-6}$           | $5.5 \cdot 10^{-8}$                      |
| 8 | 17/2 | $8.50001 \pm 2 \cdot 10^{-5}$            | $6.5 \cdot 10^{-7}$                      |
| 9 | 19/2 | $9.4999 \pm 2 \cdot 10^{-4}$             | $6.9 \cdot 10^{-6}$                      |

Table 1: Comparison of the bootstrapped energies – using the subsequent approach with K=50 and N=10~000 – with the exact spectrum of the harmonic oscilator  $E_n=n+1/2$  (in units of  $\hbar\omega$ ).

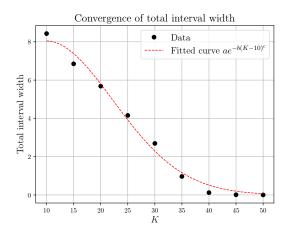


Figure 3: Convergence of the method for the harmonic oscillator. Fitted data are  $a=8.0\pm0.3$ ,  $b=0.004\pm0.002$ , and  $c=1.9\pm0.2$ .

## Double-Well

▶ using the recursion relation (4) for the double-well potential  $V(\hat{x}) = \frac{g}{2} \left( \hat{x}^2 - \frac{1}{4g} \right)^2$ , g > 0 we get for  $s \in \{4, 5, 6, ...\}$ 

$$\langle x^{s} \rangle = \frac{1}{2g} \frac{s-2}{s-1} \langle x^{s-2} \rangle + \frac{1}{g} \left( 2E - \frac{1}{16g} \right) \frac{s-3}{s-1} \langle x^{s-4} \rangle +$$

$$+ \frac{1}{4g} \frac{(s-3)(s-4)(s-5)}{s-1} \langle x^{s-6} \rangle$$
(7)

- we have the recursion relation only for even moments, but the potential V(x) is even, which means that all odd moments are equal to zero and from normalization, we know that  $\langle x^0 \rangle = 1$
- ▶ the search space is two-dimensional  $S = \{E, \langle x^2 \rangle\}$

| Bootstrapped energy at $g = 0.05$ |                                |                              |  |  |
|-----------------------------------|--------------------------------|------------------------------|--|--|
| $0.3850 \pm 4 \cdot 10^{-4}$      | $1.846 \pm 3 \cdot 10^{-3}$    | $2.8316 \pm 4 \cdot 10^{-4}$ |  |  |
| $0.4600 \pm 7 \cdot 10^{-4}$      | $1.884 \pm 3 \cdot 10^{-3}$    | $2.8556 \pm 5 \cdot 10^{-4}$ |  |  |
| $0.4971 \pm 2 \cdot 10^{-4}$      | $2.244 \pm 2 \cdot 10^{-3}$    | $2.8798 \pm 6 \cdot 10^{-4}$ |  |  |
| $1.0643\pm 8\cdot 10^{-4}$        | $2.263 \pm 2 \cdot 10^{-3}$    | $2.9040 \pm 6 \cdot 10^{-4}$ |  |  |
| $1.598 \pm 3 \cdot 10^{-3}$       | $2.283 \pm 2 \cdot 10^{-3}$    | $2.9284 \pm 7 \cdot 10^{-4}$ |  |  |
| $1.808 \pm 3 \cdot 10^{-3}$       | $2.784123 \pm 9 \cdot 10^{-6}$ | $2.9530 \pm 7 \cdot 10^{-4}$ |  |  |
| $1.829 \pm 3 \cdot 10^{-3}$       | $2.8078 \pm 2 \cdot 10^{-4}$   | $2.9777 \pm 6 \cdot 10^{-4}$ |  |  |

Table 2: The bootstrapped energies for the double-well potential obtained by subsequently applying the bootstrap method with K=18 and N=300 (in units of  $\hbar\omega$ ). Red ones are the impostors discarded by Figure 5 and Figure 6.

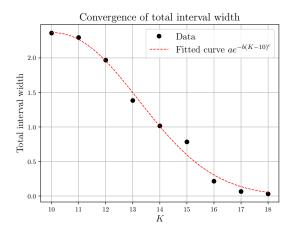


Figure 4: Convergence of the method for the double-well. Fitted data are  $a=2.37\pm0.08,\ b=0.04\pm0.02,\ {\rm and}\ c=2.2\pm0.2.$ 

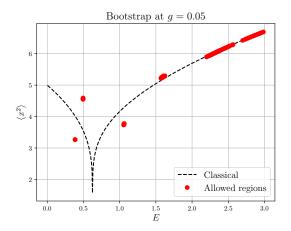


Figure 5: Reduced search space after one run of the bootstrap method for K=16 and N=600 together with the curve for the classical particle.

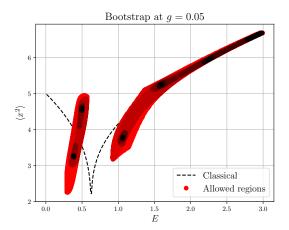


Figure 6: Reduced search space after subsequently running the bootstrap method for K from 10 (lightest) to 18 (darkest) and N=300 together with the curve for the classical particle.

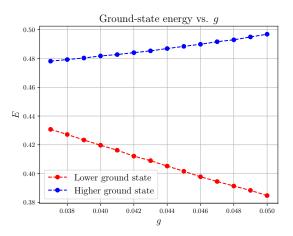


Figure 7: Dependence of energies of the ground and the first excited state on the coupling constant g. Both energies are closing on each other as  $g \to 0$ . We used one-run approach with K = 18 and N = 900.

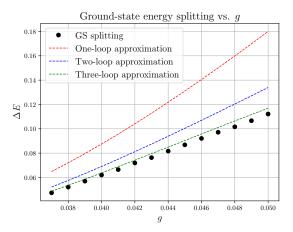


Figure 8: Dependence of energy difference of the ground and the first excited state on the coupling constant g in comparison with the one-loop (equivalent with the WKB), the two-loop, and the three-loop approximation method. We used one-run approach with K=18 and N=900.

### Conclusion

- we found that the bootstrap method gave us better results than the standard approximation methods
- we explored two approaches to the bootstrap method the one-run and the subsequent approach
- we found that the one-run approach is faster and more stable than the subsequent one and, therefore, more suitable for more complicated programs
- in systems with no prior knowledge, it is more convenient to use the subsequent approach because it is easier to spot that we missed some energies
- we recommend using the subsequent approach to get to know the new system and then using the one-run approach with calibrated parameters in more complicated programs