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Introduction

I the conformal bootstrap is a numerical method which
leverages symmetries and consistency conditions

I used initially in Conformal Field Theory (CFT) – for example
for estimating the 3d Ising model critical exponents

I we introduce and test the method on two simple quantum
mechanical systems – the harmonic oscillator and the
double-well – using our implementation in Python

I we estimate spectra of these systems and focus on the
splitting of the ground state and the first excited state of the
double-well

I obtained results are compared with the results gained
analytically



Analytical methods

WKB approximation

I the approximation technique for a particular class of
differential equations (in our case a time-independent
Schrödinger equation)

I for a particle in a given potential, it will provide an ansatz for
its wavefunction in classically allowed and forbidden regions

Path integral approach

I using the path integral formalism to express important
quantities (such as the canonical partition function) and
approximating these path integrals

I approximating the (Euclidean) action of the path integral
around its saddle points to the second order (one-loop
approximation) or to the higher orders (n-loop
approximations)



Numerical bootstrap

I according to Oxford Learner’s Dictionaries, bootstrap literally
means an approach to creating something that uses the
minimum amount of resources possible

I we will use just symmetry of the potentials and three basic
identities true for any operator Ô

〈E |[Ĥ, Ô]|E 〉 = 〈E |(ĤÔ − ÔĤ)|E 〉 = E 〈E |Ô|E 〉 − E 〈E |Ô|E 〉 = 0 (1)

〈E |ĤÔ|E 〉 = E 〈E |Ô|E 〉 (2)

〈E |Ô†Ô|E 〉 = (Ô|E 〉)†(Ô|E 〉) ≥ 0 (3)



I using the first two identities on operators Ô = x̂n,
n ∈ N ∪ {0} and Ô = x̂mp̂, m ∈ N, we can get rid of the
momentum operators and have recursion relation for the
coordinate moments

2mE 〈xm−1〉+ 1

4
m(m−1)(m−2)〈xm−3〉−〈xmV ′(x)〉−2m〈xm−1V (x)〉 = 0

(4)

I using the last identity on operator Ô =
∑

i ci x̂
i , ci ∈ C we get

the consistency condition

0 ≤ 〈O†O〉 =
∑
i,j

c∗i 〈x i+j〉cj =
∑
i,j

c∗i Mijcj (5)

I the matrix M, which elements are Mij = 〈x i+j〉, is called a
Hankel matrix



Algorithmic structure

1. Select a subset of the search space X ⊂ S . For each
point p = (E , 〈x〉, . . .) ∈ X generate the moment
sequence {〈xm〉}2K−20 .

2. From 2K − 2 terms of this sequence for the point p construct
the K × K Hankel matrix Mij = 〈x i+j〉, 0 ≤ i , j ≤ K − 1.

3. Check if the matrix M is positive definite. If it is not positive
definite, then dismiss the point p. This way, we obtain the set
of allowed points XK ⊆ X at depth K .

4. Repeat this procedure starting with the set of points XK and
depth K + 1.



Applications
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Harmonic oscillator

I using the recursion relation (4) for the harmonic oscillator
potential V (x̂) = 1

2 x̂
2 we get for s ∈ {2, 3, 4, . . .}

s〈x s〉 = 2E (s − 1)〈x s−2〉+
1

4
(s − 1)(s − 2)(s − 3)〈x s−4〉 (6)

I we have the recursion relation only for even moments, but the
potential V (x) is even, which means that all odd moments are
equal to zero and from normalization, we know that 〈x0〉 = 1

I the search space is one-dimensional S = {E}



n En Bootstrapped energy Relative difference from the exact value

0 1/2 0.50± 0.01 1.2 · 10−50

1 3/2 1.499999999999999996± 9 · 10−18 2.8 · 10−18

2 5/2 2.500000000000001± 3 · 10−15 4.6 · 10−16

3 7/2 3.4999999999998± 4 · 10−13 5.4 · 10−14

4 9/2 4.50000000001± 3 · 10−11 2.9 · 10−12

5 11/2 5.499999999± 1 · 10−9 1.0 · 10−10

6 13/2 6.50000001± 4 · 10−8 1.8 · 10−9

7 15/2 7.500000± 1 · 10−6 5.5 · 10−8

8 17/2 8.50001± 2 · 10−5 6.5 · 10−7

9 19/2 9.4999± 2 · 10−4 6.9 · 10−6

Table 1: Comparison of the bootstrapped energies – using the subsequent
approach with K = 50 and N = 10 000 – with the exact spectrum of the
harmonic oscilator En = n + 1/2 (in units of ~ω).
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Figure 3: Convergence of the method for the harmonic oscillator. Fitted
data are a = 8.0± 0.3, b = 0.004± 0.002, and c = 1.9± 0.2.



Double-Well

I using the recursion relation (4) for the double-well potential

V (x̂) = g
2

(
x̂2 − 1

4g

)2
, g > 0 we get for s ∈ {4, 5, 6, . . .}

〈x s〉 =
1

2g

s − 2

s − 1
〈x s−2〉+

1

g

(
2E − 1

16g

)
s − 3

s − 1
〈x s−4〉+

+
1

4g

(s − 3)(s − 4)(s − 5)

s − 1
〈x s−6〉 (7)

I we have the recursion relation only for even moments, but the
potential V (x) is even, which means that all odd moments are
equal to zero and from normalization, we know that 〈x0〉 = 1

I the search space is two-dimensional S = {E , 〈x2〉}



Bootstrapped energy at g = 0.05

0.3850± 4 · 10−4 1.846± 3 · 10−3 2.8316± 4 · 10−4

0.4600± 7 · 10−4 1.884± 3 · 10−3 2.8556± 5 · 10−4

0.4971± 2 · 10−4 2.244± 2 · 10−3 2.8798± 6 · 10−4

1.0643± 8 · 10−4 2.263± 2 · 10−3 2.9040± 6 · 10−4

1.598± 3 · 10−3 2.283± 2 · 10−3 2.9284± 7 · 10−4

1.808± 3 · 10−3 2.784123± 9 · 10−6 2.9530± 7 · 10−4

1.829± 3 · 10−3 2.8078± 2 · 10−4 2.9777± 6 · 10−4

Table 2: The bootstrapped energies for the double-well potential obtained
by subsequently applying the bootstrap method with K = 18 and
N = 300 (in units of ~ω). Red ones are the impostors discarded by
Figure 5 and Figure 6.
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Figure 4: Convergence of the method for the double-well. Fitted data are
a = 2.37± 0.08, b = 0.04± 0.02, and c = 2.2± 0.2.
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Figure 5: Reduced search space after one run of the bootstrap method for
K = 16 and N = 600 together with the curve for the classical particle.
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Figure 6: Reduced search space after subsequently running the bootstrap
method for K from 10 (lightest) to 18 (darkest) and N = 300 together
with the curve for the classical particle.
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Figure 7: Dependence of energies of the ground and the first excited
state on the coupling constant g . Both energies are closing on each other
as g → 0. We used one-run approach with K = 18 and N = 900.
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Figure 8: Dependence of energy difference of the ground and the first
excited state on the coupling constant g in comparison with the one-loop
(equivalent with the WKB), the two-loop, and the three-loop
approximation method.We used one-run approach with K = 18 and
N = 900.



Conclusion

I we found that the bootstrap method gave us better results
than the standard approximation methods

I we explored two approaches to the bootstrap method – the
one-run and the subsequent approach

I we found that the one-run approach is faster and more stable
than the subsequent one and, therefore, more suitable for
more complicated programs

I in systems with no prior knowledge, it is more convenient to
use the subsequent approach because it is easier to spot that
we missed some energies

I we recommend using the subsequent approach to get to know
the new system and then using the one-run approach with
calibrated parameters in more complicated programs
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