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Introduction

» the conformal bootstrap is a numerical method which
leverages symmetries and consistency conditions

» used initially in Conformal Field Theory (CFT) — for example
for estimating the 3d Ising model critical exponents

» we introduce and test the method on two simple quantum
mechanical systems — the harmonic oscillator and the
double-well — using our implementation in Python

> we estimate spectra of these systems and focus on the
splitting of the ground state and the first excited state of the
double-well

P obtained results are compared with the results gained
analytically



Analytical methods

WKB approximation

» the approximation technique for a particular class of
differential equations (in our case a time-independent
Schrodinger equation)

» for a particle in a given potential, it will provide an ansatz for
its wavefunction in classically allowed and forbidden regions

Path integral approach

» using the path integral formalism to express important
quantities (such as the canonical partition function) and
approximating these path integrals

» approximating the (Euclidean) action of the path integral
around its saddle points to the second order (one-loop
approximation) or to the higher orders (n-loop
approximations)



Numerical bootstrap

» according to Oxford Learner's Dictionaries, bootstrap literally
means an approach to creating something that uses the
minimum amount of resources possible

> we will use just symmetry of the potentials and three basic
identities true for any operator O

) ()
(E|O OIE) = (OIE))!(OIE)) = 0 (3)



» using the first two identities on operators 0=x"
ne NU{0} and 0= X™p, m e N, we can get rid of the
momentum operators and have recursion relation for the
coordinate moments

2mE<x’"_1>—|—%m(m—l)(m—2)<xm_3>—(XmV'(X)>—2m<x’"_1V(X)} =0

(4)

> using the last identity on operator O =) . ¢iX', ¢; € C we get
the consistency condition

0<(070) =3 cf(x™M)g =) ¢ Mg (5)
ij ij

> the matrix M, which elements are M;; = (x'/), is called a
Hankel matrix



Algorithmic structure

1. Select a subset of the search space X C S. For each
point p = (E, (x),...) € X generate the moment
sequence {(x™) %K_z.

2. From 2K — 2 terms of this sequence for the point p construct
the K x K Hankel matrix M;; = (x/), 0 <i,j < K —1.

3. Check if the matrix M is positive definite. If it is not positive
definite, then dismiss the point p. This way, we obtain the set
of allowed points Xy C X at depth K.

4. Repeat this procedure starting with the set of points Xk and
depth K + 1.



Applications
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Figure 1: The harmonic oscillator
potential V(x) = 3x°. Figure 2: The double-well potential

V(x):%(xQ—é)2,g>0.



Harmonic oscillator

» using the recursion relation (4) for the harmonic oscillator
potential V/(X) = %)?2 we get for s € {2,3,4,...}

s(x*) = 2E(s = 1){x*"2) + %(S —1(s=2)(s =3 (6)

» we have the recursion relation only for even moments, but the
potential V/(x) is even, which means that all odd moments are
equal to zero and from normalization, we know that (x%) =1

» the search space is one-dimensional S = {E}



m| 5 Bootstrapped energy Relative difference from the exact value
0| 1/2 0.50 +0.01 1.2-107%0
1| 3/2 | 1.499999999999999996 + 9 - 10~ 18 2.8-10718
2| 5/2 2.500000000000001 + 3 - 10715 4.6-10710
3| 7/2 3.4999999999998 + 4 - 1013 5.4.1071
41 9/2 450000000001 + 3 - 10~1* 2.9-10712
5| 11/2 5.499999999 + 1 -10~° 1.0-107%0
6 | 13/2 6.50000001 + 4 - 108 1.8-107°
7115/2 7.500000 + 1-107° 5.5-1078
8| 17/2 8.50001 +2- 1075 6.5-1077
9| 19/2 0.4999 +2-107* 6.9-10°°

Table 1: Comparison of the bootstrapped energies — using the subsequent
approach with K =50 and N = 10 000 — with the exact spectrum of the
harmonic oscilator E, = n+ 1/2 (in units of fw).



Convergence of total interval width
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Figure 3: Convergence of the method for the harmonic oscillator. Fitted
data are a=8.0+0.3, b =0.004 £+ 0.002, and ¢ = 1.9+ 0.2.



Double-Well

» using the recursion relation (4) for the double-well potential

2
v(>?)=%<>?2—é> ;& >0 we get for s € {4,5,6,...}

()= =TT 22 4 L <2E - 1> S 73 ey

2gs-—1 g 16g /) s—1
1 (s=3)(s—4)(s—5), .
+E 1 (x*7%) (7)

» we have the recursion relation only for even moments, but the
potential V(x) is even, which means that all odd moments are
equal to zero and from normalization, we know that (x%) =1

> the search space is two-dimensional S = {E, (x?)}



Bootstrapped energy at g = 0.05
0.3850+4-107% | 1.846+3-10-3 |2.8316+4-10"*
0.4600+7-107% | 1.884+3-16=3 |2.8556+5-107*
0.4971+2-107% | 2244+2-1073 |2.8798+6-10*
1.06434+8-107% | 2.263+2-1073 | 2.9040+6-10"*

1598 +3-103 2.283+2-107% | 2.9284+7-10"*
1:808+3-10-3 | 2.784123+9-107% | 2.9530 +7-10~*
1.8204+3-10=3 | 2.8078+2-10"% | 29777 +£6-107*

Table 2: The bootstrapped energies for the double-well potential obtained
by subsequently applying the bootstrap method with K = 18 and

N =300 (in units of iw). Red ones are the impostors discarded by
Figure 5 and Figure 6.
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Figure 4: Convergence of the method for the double-well. Fitted data are
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Bootstrap at g = 0.05
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Figure 5: Reduced search space after one run of the bootstrap method for
K =16 and N = 600 together with the curve for the classical particle.



Bootstrap at g = 0.05
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Figure 6: Reduced search space after subsequently running the bootstrap
method for K from 10 (lightest) to 18 (darkest) and N = 300 together
with the curve for the classical particle.



Ground-state energy vs. g
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Figure 7: Dependence of energies of the ground and the first excited
state on the coupling constant g. Both energies are closing on each other
as g — 0. We used one-run approach with K = 18 and N = 900.



Ground-state energy splitting vs. g
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Figure 8: Dependence of energy difference of the ground and the first
excited state on the coupling constant g in comparison with the one-loop
(equivalent with the WKB), the two-loop, and the three-loop
approximation method.We used one-run approach with K = 18 and

N = 900.



Conclusion

» we found that the bootstrap method gave us better results
than the standard approximation methods

> we explored two approaches to the bootstrap method — the
one-run and the subsequent approach

» we found that the one-run approach is faster and more stable
than the subsequent one and, therefore, more suitable for
more complicated programs

P in systems with no prior knowledge, it is more convenient to
use the subsequent approach because it is easier to spot that
we missed some energies

> we recommend using the subsequent approach to get to know
the new system and then using the one-run approach with
calibrated parameters in more complicated programs
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