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MOTIVATION: g-2

Anomalous magnetic moment of the muon: extremely high-precision quantity

• g-factor of muon expected to be 2 from spin: µ⃗s = g eS⃗
2m

• radiative/loop corrections effect deviations: gµ−2
2 =: aµ ̸= 0

• can be measured by observing muon spin precession in a magnetic storage ring

• theory calculation in Standard Model using data-driven dispersive approaches and
lattice methods; 2020 value (without lattice): aSM

µ = 116591810(43)× 10−11 [1]

• deviation of ∼ 5σ between Ref. [1] and experimental average measurement,
aexp
µ = 116592059(22)× 10−11 [2]

[NewScientist, “Muon whose army? (19 May 2010)]

[Bingzhi Li(Unlisted, CN) for the Muon g-2 collaboration. (Apr 29, 2024), PoS HQL2023 (2024) 009]

• aµ includes QED and electroweak contributions (well-known)

• currently under debate: hadronic contributions, hadronic vacuum polarization (HVP)
and hadronic light-by-light scattering (HLbL)
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POLES AND TRANSITION FORM FACTORS

Different intermediate states contribute to the HLbL part of aSMµ , including resonances
R with quantum numbers JPC
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• the resonance couples to (virtual) photons via transition form factor FRγγ

• describe FRγγ with different models, involving vector-meson dominance and disper-
sive treatment

AXIAL-VECTOR & TENSOR MESONS

Can consider an axial-vector (A) or a tensor meson (T ) as the intermediate resonance

Axial-vector mesons (JPC = 1++) notoriously difficult to measure due to LANDAU-
YANG theorem which forbids decay to real photons

• for A = f1(1285), can make connection to decay f1 → e+e−, scattering e+e− →
f1π

+π−, and other processes [3, 4] as FAγγ is universal

• for A = a1(1260), less experimental data, but main decay to 3π or ρπ

Tensor mesons (JPC = 2++) are not restricted by the LANDAU-YANG theorem

• for T = a2(1320), the main decay channel is to 3π or ρπ; connection to scattering
process e+e− → a2 e

+e− [5]

FRAMEWORK

Model the dynamical behavior of FAγγ and FTγγ via a left-hand cut
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• dispersion relation for left-hand cut, describing the imaginary part in terms of the
cross section with a vector-meson/pseudoscalar-meson pole

• framework based on ChPT including field representations for the pseudoscalar
(P), vector (Vµ), axial-vector (Aµ) and tensor (Tµν) multiplets [6] (containing only
the relevant degrees of freedom for considering a01/a

0
2 → ρ±π∓)
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Connect to V P → γ∗γ∗ amplitude Mαµν (free indices will be contracted with polar-
ization vectors of V, γ∗)
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• decomposition as Mαµν =
∑

iFiT
αµν
i

• need gauge-invariant description of the V P → γ∗γ∗ vertex

• LORENTZ structures T αµν
i should be free of kinematic singularities and zeros

→ form factors Fi free of kinematic zeros and singularities (for dispersion relation)

• BTT procedure [7–9]: project T αµν
i using WARD identities, form linear combina-

tions in order to remove poles

• use SCHOUTEN identities to find basis for {T αµν
i }

NEXT STEPS

• contract V P → γ∗γ∗ amplitude with the corresponding vertex for axial-vector or
tensor meson,
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• identify the form of the remaining form factors, based on dispersion relations, and
perform the loop integral

• cross-check the model against experimental data
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