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• Lagrangians

• Symmetries and group theory

• Particle physics, QCD, and effective field theories

• Chiral symmetry and (non)conserved Noether currents

• Spontaneous symmetry breaking and Goldstone bosons

• Chiral Lagrangian

• (Explicit symmetry breaking and low-energy constants)
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Lagrangians and symmetries, Noether’s theorem
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Group theory

A group is a set G = {g1, ..., gN} together with a group

operation

◦ : G × G → G , (gi , gj) 7→ gi ◦ gj = gk , i , j , k ∈ {1, ...,N}

with the following properties

• associativity: (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk) ∀gi , gj , gk ∈ G

• neutral element: ∃e ∈ G : e ◦ g = g = g ◦ e ∀g ∈ G

• inverse elements: ∀g ∈ G ∃g−1 ∈ G : g ◦ g−1 = e = g−1 ◦ g

A group is called commutative/abelian if

gi ◦ gj = gj ◦ gi ∀gi , gj ∈ G
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Group actions and representations
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Lie groups

• infinitely many elements, parameterised by parameter θi

• is also a differentiable manifold (think: line, surface,...)

• can write every group element g ∈ G

g = e iθiai

• ai group generators, form Lie algebra g for the Lie group G

• (algebra: vector space (with addition, scalar multiplication)

with Lie bracket [, ] : g× g → g, (ai , aj) 7→ [ai , aj ] = ak)
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Important Lie groups in physics

• (S)O(n) ((special) orthogonal group, rotations: OTO = 1)

• (S)U(n) ((special) unitary group: U†U = 1)

→ dim SU(n) = n2 − 1

U(n) ≃ SU(n)× U(1), g ∈ U(1) ⇒ g = e iθ·1

(“it’s just a phase”)

• generators of SU(3): Gell-Mann matrices {λj}8j=1
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Particle physics

Associate particles with quantised field ϕ1(x), ϕ2(x), ... at

position x = (t, x⃗)

• ϕi (x) contain creation & annihilation operators acting on

states
• particles ordered according to quantum numbers: behaviour
under different symmetry operators

• Lorentz group (space-time symmetries: rotations,

translations, boosts), spin S

• discrete symmetries, e.g., parity ϕ(x)
P−→ +ϕ(x)/− ϕ(x)

⇒ different representations of the Lorentz group

S/P + −

0 scalar pseudoscalar

1 axial vector vector
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The Standard Model

Build Lagrangian from fields and couplings, terms like

m2ϕ1(x)ϕ1(x), c ϕ1(x)ϕ1(x)ϕ2(x), ...

• SM includes electromagnetic (em) interaction (U(1)), weak

interaction (SU(2)), and strong interaction (SU(3)) with

couplings αem, αw (actually a bit more involved), and αs

• Noether current in 4-d: jµ, charge: Q =
∫
d3x j0

• calculate decay or scattering rates via Feynman rules:

everything that can happen will happen, sum over all processes

⇒ infinite series in coupling constants, perturbative QFT

= + + ...
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Strong Interaction: Quantum Chromodynamics

• additional symmetry/quantum number: isospin

(proton/neutron), SU(2)

• more generally: ”flavour”, quarks come in nf = 6 different

flavours, u, d , s, c, b, t, SU(nf )

• gauge bosons: gluon, couples to colour-charged particles

(quarks and gluons), SU(nc)

LQCD =
∑

f ∈{u,d ,s,c,b,t}

q̄f

(
i /D︸︷︷︸
covariant derivative

− Mf︸︷︷︸
quark masses

)
qf︸︷︷︸

quark field

− 1

4
Gµν,aG

µν,a︸ ︷︷ ︸
kinetic term of gluons
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The Problem with LQCD

LQCD =
∑
f

q̄f
(
i /D −Mf

)
qf −

1

4
Gµν,aG

µν,a

Problem: at low energies no perturbation theory possible

→ construct low-energy effective field theory (EFT)

• Find relevant degrees of freedom (dofs)

Billiards: neglect finite mass of border and deformations,

instead scattering of balls off “infinitely heavy” border

• Find allowed terms of Lagrangian LχPT

LQCD and LχPT must have same symmetries

→ Symmetries of LQCD needed for finding both!
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Symmetries of LQCD

What symmetries does LQCD possess?

• Lorentz invariance

• discrete symmetries P, C , T

• SU(3)c gauge invariance by design

What else?

Low-energy EFT: consider only light quarks (u, d , s)

→ find approximate chiral symmetry

What is that?
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Chiral Symmetry – Projection Operators

• define projection operator PL/R = 1
2 (1∓ γ5)

• decomposes quark fields into left- and right-handed chiral

components,

qL = PLq and qR = PRq with q = qL + qR

(“Lorentz invariant version of handedness”)

• PL and PR are projection operators, because . . .

• P2
L = PL and P2

R = PR

• PLPR = 0 = PRPL

• PL + PR = 1

use γ25 = 1
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Chiral Symmetry – Chiral Decomposition

LQCD = −1

4
Gµν,aG

µν,a + q̄i /Dq︸ ︷︷ ︸
L0
QCD

− q̄Mq︸ ︷︷ ︸
Lm
QCD

Decomposition of the quark terms yields

• q̄ /Dq = q̄L /DqL + q̄R /DqR

• q̄Mq = q̄RMqL + q̄LM†qR → couples qL and qR

using γ†5 = γ5 and {γ5, γ0} = γ5γ0 + γ0γ5 = 0

⇒ In chiral limit (mu = md = ms = 0), L0
QCD invariant under

chiral U(3)L × U(3)R flavour transformations
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Chiral Symmetry – Flavour transformations

L0
QCD invariant under independent U(3) transfos of qL and qR

uL

dL

sL

 7→ UL


uL

dL

sL

 = exp

−i
8∑

j=1

ΘL
j

λj

2

 e−iΘL


uL

dL

sL



uR

dR

sR

 7→ UR


uR

dR

sR

 = exp

−i
8∑

j=1

ΘR
j

λj

2

 e−iΘR


uR

dR

sR


• acting in flavour space (ie. u, d , s)

• global and continuous symmetry!

• decomposed into U(3) = SU(3)× U(1)

8 Gell-Mann matrices & 1 phase factor → still 9 generators
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Chiral Symmetry – Noether Currents

• Rewrite whole symmetry group

U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)L × U(1)R

• Obtain Noether currents

Lµ0 = q̄Lγ
µqL, Lµj = q̄Lγ

µ λj

2 qL

Rµ
0 = q̄Rγ

µqR , Rµ
j = q̄Rγ

µ λj

2 qR

using jµ = δL
δ(∂µq)

δq with q 7→ q + αδq
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Chiral Symmetry – Group Theory Shenanigans

• introduce V = L+ R and A = R − L

compare to 2-body system with equal masses:

center of mass R⃗ = 1
2 (x⃗ + y⃗) and relative coordinate

r⃗ = x⃗ − y⃗

• again rewrite whole symmetry group

U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)L × U(1)R

= SU(3)V × SU(3)A × U(1)V × U(1)A

• obtain vector- and axial-vector currents

V µ
0 = q̄γµq, V µ

j = q̄γµ λa
2 q

Aµ
0 = q̄γµγ5q, Aµ

j = q̄γµγ5
λa
2 q
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Chiral Symmetry – Currents Conserved?

Are these currents conserved, ∂µj
µ = 0? (consider quark masses to

assess explicit symmetry breaking)

Use free Dirac equation /∂q = −iMq and q̄ ⃗/∂ = q̄iM

• ∂µV
µ
0 = 0 for any M

• ∂µA
µ
0 = 2i q̄Mγ5q + quantum corrections → ̸= 0 even for

M = 0, symmetry only conserved on classical level

• ∂µV
µ
j = i q̄

[
M,

λj

2

]
q

• ∂µA
µ
j = i q̄

{
M,

λj

2

}
q

→ remaining symmetry group of L0
QCD (M = 0):

SU(3)V × SU(3)A × U(1)V
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Charges and Generators

• Calculate charges of Vj and Aj

QV ,j =

∫
d3xV 0

j (x⃗ , t), QA,j =

∫
d3xA0

j (x⃗ , t)

• from ∂µj
µ = 0 we see that charges conserved, ∂tQ = 0

• Q commutes with Hamiltonian H

• Q associated with generator of the symmetry
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Spontaneous symmetry breaking

• a symmetry can manifest itself in different ways: the
conserved charge always commutes with the Hamiltonian,
[Q,H], but it can either

• annihilate the vacuum, Q |0⟩ = 0, Wigner-Weyl mode

• not annihilate the vacuum, Q |0⟩ ≠ 0, Nambu-Goldstone

mode

⇒ vacuum not invariant, emergence of massless excitations:

Goldstone bosons

• Wigner-Weyl mode for Vj and Aj would imply “parity

doubling” in hadronic spectrum

⇒ do not see this, hence Nambu-Goldstone mode is

realised for Aj , spontaneous symmetry breaking
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Pseudo-Goldstone bosons

• Low energies, 8 pseudo-Goldstone bosons are relevant dofs!

→ identify as π+, π−, π0, K+, K−, K 0, K̄ 0, η

• Why ”pseudo”?

Since quark masses ̸= 0: π, K and η do have mass!

Spectrum of light hadrons (thanks to Leon Heuser!) 20/28



Constructing LχPT – Describing Fields

How to construct effective Lagrangian describing these fields?

→ more group theory!

Short answer:

• fields contained in unitary matrix

U = exp

{
i

F
λjΦj

}
= exp


√
2i

F


Φ3√
2
+ Φ8√

6
π+ K+

π− − Φ3√
2
+ Φ8√

6
K 0

K− K̄ 0 −2Φ8√
6




• U transforms under

G = SU(3)R × SU(3)L = {(R, L)|R ∈ SU(3), L ∈ SU(3)}
according to

U
G7→ Ũ = LUR†

• Construct Lagrangian, s.t. invariant under group action of G 21/28



Constructing LχPT – Describing Fields 2

Long answer:

• G = SU(3)R × SU(3)L = {(R, L)|R ∈ SU(3), L ∈ SU(3)} is

symmetry group of L0
QCD

• unbroken subgroup H = {(V ,V )|V ∈ SU(3)}
• ∃ isomorphic mapping between quotient group

G/H = {gH|g ∈ G} (left coset) and the Goldstone boson

fields

• properties of φ for g1, g2 ∈ G :

φ(e, Φ) = Φ and φ(g1, φ(g2, Φ)) = φ(g1g2, Φ)

• with Φ = φ(f , 0), f = gh ∈ gH, 0 as “ground state”, we find

φ(g̃ , Φ) = φ(g̃ , φ(gh, 0)) = φ(g̃gh, 0) =: φ(f̃ , 0) = Φ̃
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Constructing LχPT – Describing Fields 3

• write g = (R, L) ∈ G and

gH = (R, L)(V ,V ) = (RV , LV ) = · · · = (1, LR†)H

→ left coset can be uniquely defined by U = LR† (unitary)

• How does it transform?

g̃gH = (R̃, L̃)(1,U)H = (R̃, L̃U)H = (1, L̃UR̃†)H

→ U
G7→ Ũ = L̃UR̃†
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Constructing LχPT – General Considerations

What can we do with U?

• “Dagger it”: U† = U−1

• take derivatives: ∂µU

Can construct terms now! They need to be

• Lorentz invariant

even number of derivatives (factors of momentum) per term;

low momenta → # derivatives provide ordering scheme!

Structure LχPT in terms of # derivatives

L = L0 + L2 + L4 + L6 + . . .

• all possible allowed terms invariant under G

→ important tool: Trace! (Cyclicity: ⟨ABC ⟩ = ⟨CAB⟩)
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Constructing LχPT – Finding terms

• L0:

→ need U and U†

→ but UU† = 1 → constant!

• L2:

→ find as only contribution ⟨∂µU∂µU†⟩
→ not ⟨U∂µ∂

µU†⟩, because connected to above via integration

by parts

• L4:

→ ⟨∂µU∂µU†⟩2

→ ⟨∂µU∂νU
†⟩⟨∂µU∂νU†⟩

→ ⟨∂µU∂µU†∂νU∂νU†⟩
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Constructing LχPT – Where are the fields?

• Remember U = exp{iΦ/F}, Φ = λjΦj

• How to get Lagrangian in terms of meson fields in the

exponential?

• Expand!

U = exp

{
i

F
Φ

}
≈ 1+

i

F
Φ− 1

2F 2
Φ2 + .̇..

→ terms with four fields can stem from e.g. L4 or L2 at higher

order in expansion of U
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Explicit symmetry breaking: masses
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Resources

Chiral Perturbation theory

• S. Scherer, M.R. Schindler: A Primer for Chiral Perturbation

Theory, Springer 2012, doi:10.1007/978-3-642-19254-8.

• S. Scherer, M.R. Schindler: A Chiral perturbation theory primer,

arXiv 2005, arXiv:hep-ph/0505265.

• B. Kubis: An Introduction to chiral perturbation theory, Workshop on

Physics and Astrophysics of Hadrons and Hadronic Matter 2007,

arXiv:hep-ph/070327.

Basics and further reading

• U.-G. Meißner, A. Rusetsky: Effective Field Theories, Cambridge

University Press 2022, doi:10.1017/9781108689038.

• M.D. Schwartz: Quantum Field Theory and the Standard Model,

Cambridge University Press 2013, doi:https:/10.1017/9781139540940.

• & many more books on QFT and group theory
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