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Lagrangians and symmetries, NOETHER's theorem
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Group theory

A group is a set G = {gi,...,gn} together with a group
operation

0:GxG—G, (g,g)—8gog=2=8k IJj,ke{l, . N}
with the following properties

e associativity: (gj o gj) OBk =8&i©° (gj ° gk) Vgi, gj,8k € G
e neutral element: de € G:eog=g=goe VYgei

1 -1

e inverse elements: Vg € G 3g 1€ G:gog l=e=glog

A group is called commutative/abelian if

giogi=g°8 Vg.g&chtb
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Group actions and representations
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e infinitely many elements, parameterised by parameter 0;
e is also a differentiable manifold (think: line, surface,...)

e can write every group element g € G

g — ei€,-a,-
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e infinitely many elements, parameterised by parameter 0;
e is also a differentiable manifold (think: line, surface,...)

e can write every group element g € G
g — ei€,-a,-

e a; group generators, form LIE algebra g for the LIE group G

e (algebra: vector space (with addition, scalar multiplication)
with LIE bracket [,] : g x g — g, (ai,aj) — [ai, )] = ak)
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Important LIiE groups in physics

e (S)O(n) ((special) orthogonal group, rotations: OTO = 1)
e (S)U(n) ((special) unitary group: UtU = 1)
— dim SU(n) = n? — 1

U(n) ~ SU(n) x U(1), ge U(1)=g=et
(“it's just a phase”)

e generators of SU(3): GELL-MANN matrices {)‘j}?:l
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Particle physics

Associate particles with quantised field ¢1(x), $2(x), ... at
position x = (t, X)

e ¢;(x) contain creation & annihilation operators acting on
states

e particles ordered according to quantum numbers: behaviour
under different symmetry operators
e LORENTZ group (space-time symmetries: rotations,
translations, boosts), spin S
e discrete symmetries, e.g., parity ¢(x) L +¢(x)/ — ¢(x)
= different representations of the LORENTZ group

sipl o+ -
0 scalar pseudoscalar
1 | axial vector vector
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The Standard Model

Build Lagrangian from fields and couplings, terms like

m?p1(x)d1(x), ¢ p1(x)d1(x)Pa(x), ...

e SM includes electromagnetic (em) interaction (U(1)), weak
interaction (SU(2)), and strong interaction (SU(3)) with
couplings ctem, v (actually a bit more involved), and as

e NOETHER current in 4-d: j#, charge: Q = [ d3x°

e calculate decay or scattering rates via Feynman rules:
everything that can happen will happen, sum over all processes
= infinite series in coupling constants, perturbative QFT

= - +
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Strong Interaction: Quantum Chromodynamics

e additional symmetry/quantum number: isospin
(proton/neutron), SU(2)

e more generally: "flavour”, quarks come in nf = 6 different
flavours, u,d,s, c, b, t, SU(n¢)

e gauge bosons: gluon, couples to colour-charged particles
(quarks and gluons), SU(nc)

Lo= Y a(i B - M)
fe{u,d,s,c,b,t} covariant derivative  quark masses quark field
1
— ZGLW,&GW’Q

kinetic term of gluons
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The Problem with Lqcp

. 1
Lqcp = Z gr (iD — M¢) gr — ZGWaG‘“"a
F

Problem: at low energies no perturbation theory possible
— construct low-energy effective field theory (EFT)

e Find relevant degrees of freedom (dofs)
Billiards: neglect finite mass of border and deformations,
instead scattering of balls off “infinitely heavy” border

e Find allowed terms of Lagrangian L,pt
Locp and L, pt must have same symmetries

— Symmetries of Lqcp needed for finding both!

10/28



Symmetries of Lqcp

What symmetries does Lqcp possess?

e LORENTZ invariance
e discrete symmetries P, C, T

e SU(3)c gauge invariance by design

What else?
Low-energy EFT: consider only light quarks (u, d, s)
— find approximate chiral symmetry

What is that?
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Chiral Symmetry — Projection Operators

e define projection operator P /p = %(]1 Fs)
e decomposes quark fields into left- and right-handed chiral
components,
gL = Prqg and gr = Prq with ¢ = q. + qr
( "LORENTZ invariant version of handedness”)

e P; and Pg are projection operators, because ...
e P2 =P, and P2 = Pg
e PPr=0= PrP,
e PL+Pr=1

use fyg =1
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Chiral Symmetry — Chiral Decomposition

1 P _
Lacp = =5 Guna G + giPg— gMq
L

L0 SCD
QCD

Decomposition of the quark terms yields

e Gi0q = g.Pq. + GrPqr
e GMq = GrMaqL + gM'qr — couples g, and qr

using 'Yg =5 and {75,7%} =757 + 7075 =0

= In chiral limit (m, = mg = ms = 0), E%CD invariant under
chiral U(3). x U(3)g flavour transformations
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Chiral Symmetry — Flavour transformations

E%CD invariant under independent U(3) transfos of ¢, and ggr

up
d
S|
Ur
dr

SR

i—>UL

u 8 \ uy
o LY —iot
d | =exp /Z Ck > d;
J=1
Sr SL
URr URr
Aj _:oR
dr | =exp | —i Z QR e '@ dr
SR SR

e acting in flavour space (ie. u, d, s)

e global and continuous symmetry!
e decomposed into U(3) = SU(3) x U(1)
8 GELL-MANN matrices & 1 phase factor — still 9 generators
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Chiral Symmetry — Noether Currents

e Rewrite whole symmetry group
U(3)L X U(3)R = 5U(3)L X 5U(3)R X U(l)L X U(].)R

e Obtain Noether currents
Ly =aquv"q, L= C_IL’Y“%CIL
Ry = @r'qr, RI' = GrRY" %GR
using j* = (d q)(Sq with g — g + adq
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Chiral Symmetry — Group Theory Shenanigans

e introduce V=L+Rand A=R—-L
compare to 2-body system with equal masses:
center of mass R = 3 (¥ + ¥) and relative coordinate
r=x-y

e again rewrite whole symmetry group

U(3)L X U(3)R = 5U(3)L X 5U(3)R X U(l)L X U(l)R
=SUB)y x SUB)a x U(1)y x U(1)a

e obtain vector- and axial-vector currents
Vi =ayq,  VI'=a1"%q
AR — gk A — Gty da
0 =974, A; =497 55 49
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Chiral Symmetry — Currents Conserved?

Are these currents conserved, d,,j* = 0?7 (consider quark masses to
assess explicit symmetry breaking)
Use free DIRAC equation Jq = —iMgq and G = giM

e 9, V}' =0 for any M

e J,A) = 2iGM-~sq + quantum corrections — # 0 even for
M =0, symmetry only conserved on classical level

¢ 0.~ ia[ 3]

e oA =ig{M F}q

— remaining symmetry group of £%CD (M =0):

5U(3)\/ X 5U(3)A X U(l)\/
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Charges and Generators

Calculate charges of V; and A;

Qv = / d3xvj°(>?, t), Qa,j= / d3xAj?(>?, t)

from 9,j# = 0 we see that charges conserved, 9;Q =0
e ( commutes with Hamiltonian H

e (@ associated with generator of the symmetry
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Spontaneous symmetry breaking

e a symmetry can manifest itself in different ways: the
conserved charge always commutes with the Hamiltonian,
[Q, H], but it can either

e annihilate the vacuum, @ |0) = 0, WIGNER-WEYL mode
e not annihilate the vacuum, Q|0) # 0, NAMBU-GOLDSTONE
mode
= vacuum not invariant, emergence of massless excitations:
GOLDSTONE BOSONS
o WIGNER-WEYL mode for V; and A; would imply “parity
doubling” in hadronic spectrum
= do not see this, hence NAMBU-(GOLDSTONE mode is
realised for A;, spontaneous symmetry breaking
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Pseudo-GOLDSTONE bosons

e Low energies, 8 pseudo-Goldstone bosons are relevant dofs!
— identify as 71, 7—, 70, K*, K=, K%, KO°, n

e Why "pseudo”?
Since quark masses # 0: w, K and 1 do have mass!

Lightest mesons

n(1800)
] (1700)
1750 —_— ha710) figso)
w(1650) 1(1600) 21(1640)
1 ——— (1500
1500 n(1475) b398 p(1450)
n(1400) H1370) w(1420) m(1400)
o f(1285)
12501 b(1235) 21260
ha(1170)
s
2 Avtag.
2 1000 > ====22 - o507 e
s .
4 ke ok
= :3 0
750 e
Kqy' (700)
500 o =— nK?(" f(500)
250
1
o+ o - r - e

Quantum number J°C

Spectrum of light hadrons (thanks to Leon Heuser!) 20/28



Constructing £, pt — Describing Fields

How to construct effective Lagrangian describing these fields?
— more group theory!

Short answer:

e fields contained in unitary matrix

/3 %—i—% ot K+
. 5

U—exp{ll__/\jeﬁj}—exp ?I T _%4_% KO

K- RO o

NG

e U transforms under
G =SU(3)r x SUBB)L ={(R,L)IR € SU(3),L € SU(3)}
according to

US 0= LURT

e Construct Lagrangian, s.t. invariant under group action of G 21/28



Constructing £, pt — Describing Fields 2

Long answer:

e G=SUQRB)r xSUB)L={(R,L)|R € SU(3),Le SU(3)} is
symmetry group of L’%CD

unbroken subgroup H = {(V, V)|V € SU(3)}

3 isomorphic mapping between quotient group

G/H = {gH|g € G} (left coset) and the GOLDSTONE boson
fields

e properties of ¢ for g1, 8> € G:

o(e,2) =@ and (g1, (g, P)) = ¢(g182, P)

with @ = o(f,0), f = gh € gH, 0 as “ground state”, we find

(&, D) = (&, ¢(gh,0)) = p(ggh,0) = ¢(f,0) = &
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Constructing £, pt — Describing Fields 3

e write g = (R,L) € G and
gH = (R,L)(V, V) = (RV,LV) = --- = (1, LR1H
— left coset can be uniquely defined by U = LRT (unitary)

e How does it transform?
ggH = (R,[)(1,U)H = (R, LU)H = (1, LUR"H

~ US J=ILUR
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Constructing £,pt — General Considerations

What can we do with U?

e “Daggerit’: Ul = U1

e take derivatives: 0,U
Can construct terms now! They need to be

e LLORENTZ invariant
even number of derivatives (factors of momentum) per term;
low momenta — # derivatives provide ordering scheme!
Structure £, pt in terms of # derivatives

L=Lo+Lo+Ls+Ls+...

e all possible allowed terms invariant under G
— important tool: Trace! (Cyclicity: (ABC) = (CAB))
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Constructing £,pt — Finding terms

o ﬁo:
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Constructing £,pt — Finding terms

o ﬁo:
— need U and Ut
— but UUT =1 — constant!
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Constructing £,pt — Finding terms

o ﬁo:
— need U and Ut
— but UUT =1 — constant!

[ £22
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Constructing £,pt — Finding terms

o Eo:
— need U and UT
— but UUT =1 — constant!
[ £22
— find as only contribution (9, U0 UT)
— not (U9, 0"UT), because connected to above via integration
by parts
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Constructing £,pt — Finding terms

o Eo:
— need U and UT
— but UUT =1 — constant!
[ £22
— find as only contribution (9, U0 UT)
— not (U9, 0"UT), because connected to above via integration

by parts
o £42
— (0, U0"UT)?
— (0, U8, U (o*Ud¥ UT)
— (0, U8" U9, Ud" UT)
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Constructing £, pt — Where are the fields?

Remember U = exp{i®/F}, &= \®;
How to get Lagrangian in terms of meson fields in the
exponential?

Expand!

. . 1
U= exp{ll__gﬁ} ~ 1+ %@)— ﬁ@2 + .

terms with four fields can stem from e.g. £4 or L5 at higher
order in expansion of U
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Explicit symmetry breaking: masses
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Resources

Chiral Perturbation theory

e S. SCHERER, M.R. SCHINDLER: A Primer for Chiral Perturbation
Theory, Springer 2012, doi:10.1007/978-3-642-19254-8.

e S. SCHERER, M.R. SCHINDLER: A Chiral perturbation theory primer,
arXiv 2005, arXiv:hep-ph/0505265.

e B. Kusis: An Introduction to chiral perturbation theory, Workshop on
Physics and Astrophysics of Hadrons and Hadronic Matter 2007,
arXiv:hep-ph/070327.

Basics and further reading

e U.-G. MEISSNER, A. RUSETSKY: Effective Field Theories, Cambridge
University Press 2022, doi:10.1017,/9781108689038.

e M.D. SCHWARTZ: Quantum Field Theory and the Standard Model,
Cambridge University Press 2013, doi:https:/10.1017,/9781139540940.

e & many more books on QFT and group theory
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