# Does the Redshift Distribution of Swift Long GRBs Trace the Star-Formation Rate?

Ali Hasan<sup>1,2,\*</sup> and Walid Azzam<sup>1</sup>

<sup>1</sup>Department of Physics, College of Science, University of Bahrain, Sakhir, Bahrain.

<sup>2</sup>Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

\*Address: ali.hasan@kaust.edu.sa

## INTRODUCTION

Gamma-Ray Bursts (GRBs) are traditionally classified into two classes: long GRBs (LGRBs) with an observed duration  $T_{90} > 2$  s, and short GRBs (SGRBs) with an observed duration  $T_{90} < 2$  s, where  $T_{90}$  is the observed duration during which 90% of the fluence is detected. It is theorized that SGRBs result from the merging of two compact objects, like neutron stars, while LGRBs are expected to emerge from the core-collapse of massive stars. Therefore, we expect the distribution of LGRBs through the universe to correlate with the star-formation history.

The aim of our study is to investigate the extent to which the redshift distribution of LGRBs traces the star-formation rate (SFR). To achieve that goal, we carry out Markov Chain Monte Carlo (MCMC) simulations to fit a sample of 370 *Swift* LGRBs with several proposed models.



**Figure 2.** Shows number density vs redshift for all the models.

**Figure 3.** The SFRD compared to the SFRD-like function found by fitting.



**Figure 1.** Shows (a) the redshift distribution of the GRB data set and (b) a comparison between the calculated number density using the star-formation rate and the redshift distribution.

THEORY

The number density of LGRBs can be calculated as follows:

 $dN \quad dN \, dV \quad \psi(z) \quad dV(z)$ 

|                       |                  | Fitting Results                |                               |                        |                        |                        |                        |                        |          |        |
|-----------------------|------------------|--------------------------------|-------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------|--------|
|                       |                  | α                              | β                             | γ                      | δ                      | μ                      | $r_1$                  | $r_2$                  | $\chi^2$ | AIC    |
| SFRD-like<br>Function | Most<br>Probable | 2.88 <sup>+1.28</sup><br>-1.37 | $-0.20^{+0.16}_{-0.13}$       | $4.74_{-0.60}^{+0.69}$ | $4.94^{+1.26}_{-1.23}$ |                        |                        |                        | 17.499   | 25.499 |
|                       | Best Fit         | 3.190                          | -0.365                        | 5.434                  | 5.463                  |                        |                        |                        |          |        |
| Broken Power<br>Law   | Most<br>Probable | $-2.56^{+0.41}_{-0.54}$        | $0.00\substack{+0.30\\-0.31}$ |                        |                        |                        | $1.71_{-0.30}^{+0.23}$ |                        | 17.145   | 23.14  |
|                       | Best Fit         | -2.485                         | 0.082                         |                        |                        |                        | 1.767                  |                        |          |        |
| Triple Power<br>Law   | Most<br>Probable | $-5.36^{+2.60}_{-2.12}$        | $-2.01^{+0.91}_{-0.50}$       | $0.06^{+0.30}_{-0.29}$ |                        |                        | $0.55_{-0.19}^{+0.73}$ | $1.89^{+0.43}_{-0.22}$ | 10.657   | 20.65  |
|                       | Best Fit         | -6.280                         | -2.111                        | 0.052                  |                        |                        | 0.520                  | 1.855                  |          |        |
| Exponential-<br>Power | Most<br>Probable | $-3.23^{+0.48}_{-0.44}$        |                               |                        |                        | $0.67^{+0.12}_{-0.13}$ |                        |                        | 26.523   | 30.52  |
|                       | Best Fit         | -3.291                         |                               |                        |                        | 0.686                  |                        |                        |          |        |

$$\Phi(z) = \frac{dN}{dz} = \frac{dN}{dV}\frac{dV}{dN} = A\frac{\varphi_*(z)}{1+z}\phi(z)\frac{dV(z)}{dz}$$

Where  $\psi_*(z)$  is the star-formation rate density (SFRD),  $\phi(z)$  is a term that contains all contributions to the distribution other than the SFRD,  $\frac{dV}{dz}$  is the co-moving volume element and *A* is a normalization constant.

The SFRD used is given by:

$$\psi_*(z) = \frac{0.0157 + 0.118z}{1 + \left(\frac{z}{3.23}\right)^{4.66}}$$



• The best fitting model is the triple power law, followed by the broken power law and the SFRD-like function fit.

CONCLUSIONS

- The fitting functions indicate that there are two evolution regions, low redshift where there is significant contribution from  $\phi(z)$  and high redshift where there is almost no contribution from  $\phi(z)$ . See Figure 3 for example.
- Results cooperate previous reports of high redshift LGRBs following the SFRD.
- Low redshift dilemma still proceeds.
- No indication about the physical nature of the "contribution term"  $\phi(z)$ .
- GRBs classification revision and investigation of possible contributions might be fruitful.

#### **SUMMARY**

- LGRBs are expected to be caused by the core-collapse of massive stars. This led researchers to investigate the correlation between the GRB distribution and the star formation rate (SFR).
- We sampled 370 GRBs observed by *Swift* observatory and used Monte Carlo simulations to fit the data with proposed models.

| Triple power law      | $\phi(z) = \begin{cases} \frac{(1+z)^{\alpha}}{(1+r_{1})^{\alpha}} & \text{for } z \leq r_{1} \\ \frac{(1+z)^{\beta}}{(1+r_{1})^{\beta}} & \text{for } r_{1} < z \leq r_{2} \\ \frac{(1+r_{2})^{\beta}}{(1+r_{1})^{\beta}} \frac{(1+z)^{\gamma}}{(1+r_{2})^{\gamma}} & \text{for } r_{2} < z \end{cases}$ |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exponential-power law | $\phi(z) = (1+z)^{\alpha} e^{\mu z}$                                                                                                                                                                                                                                                                      |

- The results indicate that the distribution of GRBs fits well with the SFR at high redshift but requires an evolution term at low redshifts. Previous works also concluded the same.
- A deeper look at GRB classifications, their physical origin and other possible contributors to the GRB distribution is necessary to draw stronger conclusions to this problem.

## CONTACTS

Emails: ali.hasan@kaust.edu.sa | wjazzam@uob.edu.bh LinkedIn: www.linkedin.com/in/ali-m-hasan-

### REFRENCES

 Hasan, A. and Azzam, W. (2024) Does the Redshift Distribution of Swift Long GRBs Trace the Star-Formation Rate?. International Journal of Astronomy and Astrophysics, 14, 20-44. doi: 10.4236/ijaa.2024.141002.