
Modelling of Diffusion: Simple Anomalous Diffusion

Normal Diffusion
Normal diffusion can be easily understood through the concept of random walk. In random walk, 
particles move in random directions, simulating the random thermal motion that drives diffusion.
Albert Einstein found out that Mean Squared Displacement dependence over time is linear: 

𝑥2 ∝ 𝑡
On the other hand, Mean Displacement is always zero:

𝑥 = 0
Figure 1 shows the simulation of 2D random walk and on Figure 2 we see Mean Squared 
Displacement dependence over time (on top) and Mean Displacement over time (on bottom).

Introduction
In 1827, Scottish botanist Robert Brown noticed that particles in a liquid move chaotically in different directions. Later, this kind of motion was 

classified as Normal Diffusion. In the beginning of the 20th century, Albert Einstein showed that for long times mean squared displacement (MSD) 
of Brownian particles is proportional to time. < 𝑥2 > ∝ 𝑡. However, in some cases, we have deviation from this formula and have non-linear 
relationship: < 𝑥2 > ∝ 𝑡𝛼. This kind of diffusion is called anomalous diffusion. Diffusion is a fundamental process observed across various 

disciplines such as: physics, biology and even finance. Due to its significance in various fields, it’s important to classify some random processes and 
differ them from each other. This poster will provide a brief introduction into anomalous diffusion: key points will be mentioned and simulation 

results using Monte-Carlo method will be shown.
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Subdiffusion
When Mean Squared Displacement dependence of time is 𝑥2 ∝ 𝑡𝛼, where 0 < 𝛼 < 1 we 
have SUBDIFFUSION.
Suppose we have a photon which is scattering while entering an environment where scattering 

coefficient 𝜇𝑠 is not constant and depends on the position: 𝜇
𝑠
= 𝜇0𝑒

𝛽𝑥. Photon moves 
randomly in every direction and its step size is also random. Normalized PDF for the step size 
is: 𝑝 𝑟 = 𝜇𝑠𝑒

−𝜇𝑠𝑟, from this PDF we get CDF: 𝐹 𝑟 = 1 − 𝑒−𝜇𝑠𝑟.
Using Monte-Carlo method and inverse transform sampling, we can generate random step sizes: 

𝑟 = −
1

𝜇
ln(1 − 𝜉),  where 𝜉 is a random number from standard uniform distribution in the 

interval (0,1).
In this case, we get subdiffusion: particles spread slower than in normal diffusion.
MSD over time is nonlinear: 𝑥2 ∝ 𝑡𝛼.
To calculate 𝛼 we used “logarithmic fitting”:

𝑥2 = 𝐷𝑡𝛼

ln 𝑥2 = α ⋅ ln 𝑡 + ln𝐷
After taking natural logarithm from both sides, we used polyfit function to calculate 𝐷 and 𝛼
Initial conditions:
𝜇0 = 1 ,   𝛽 = 3 ,    𝑁 = 100 000 ,   𝑇 = 100 ;  Where 𝑁 is the number of particles.
Figure 4 shows the comparison of numerical and fitted graphs.

D Coefficient (Numerical): 1.33711
D Coefficient (Theoretical): 1.33333

Figure 4

Coefficient:  D = 2.42563

alpha = 0.16529

Conclusion
In conclusion, anomalous diffusion deviates from classical Brownian motion, exhibiting non-linear relationships between mean squared displacement (MSD) 
and time. Unlike normal diffusion, where MSD scales linearly with time, anomalous diffusion, however, exibits nonlinear relationship: < 𝑥2 > ∝ 𝑡𝛼. It can 

be subdiffusive with 𝛼 < 1 or superdiffusive with 𝛼 > 1.  Understanding these deviations is important for accurately describing diffusion in complex 
systems, such as biological tissues. This poster underlines the key points of anomalous diffusion and demonstrates the results of Monte-Carlo simulation.

Superdiffusion
When some random process is influenced by the previous state of the
system, we say that we have a diffusion with memory. Correlation with
previous conditions causes anomalous diffusion. Here is a simple example of
SUPERDIFFUSION:
Suppose, we have a particle that changes its velocity after every time
interval 𝜏 and the change of velocity after each collision is: Δ𝑣 = ±𝑢 .
We need to find Mean Squared Displacement dependence over time.

Velocity on N-th step: 𝑉𝑁 = σ𝑖=0
𝑁 Δ𝑣𝑖 , then:  

Δ𝑥𝑁 = 𝜏𝑣𝑁 = 𝜏෍

𝑖=0

𝑁

Δ𝑣𝑖

So, 
Δ𝑥𝑁 = 𝜏 𝑁Δ𝑣0 + 𝑁 − 1 Δ𝑣1 +⋯+ Δ𝑣𝑛 .

Of course: Δ𝑣 = 0
Velocity changes are not correlated, so:  Δ𝑣𝑖Δ𝑣𝑘 = 0
So we have:

Δ𝑥𝑁
2 = 𝜏2𝑢2෍

𝑘=0

𝑁

𝑁 − 𝑘 2

We know that: σ𝑚=0
𝑁 𝑚2 =

1

3
𝑁 𝑁 +

1

2
𝑁 + 1 ≈

1

3
𝑁3

Then we have: Δ𝑥2 ≈
1

3
𝜏2𝑢2𝑁3,       Full time:  𝑡 = 𝑁𝜏

So we have our final equation will be:

Δ𝑥2 ≈
1

3
𝜏2𝑢2

𝑡

𝜏

3

=
𝑢2

3𝜏
𝑡3

We can rewrite the last equation as:  𝜟𝒙𝟐 ≈ 𝑫𝒕𝟑

Where  𝐷 ≡
𝑢2

3𝜏
is the Diffusion Coefficient.

Using Monte-Carlo method, we made a simulation of described
random motion. Initial conditions:
𝑢 = 2 , 𝜏 = 1 , 𝑁 = 100 000 , 𝑇 = 300 ; Where 𝑁 is the number
of particles.
Figure 3 shows the graphs of numerical, fitted and theoretical
dependence.
After fitting, we calculated the diffusion coefficient and compared it
with theoretical value:
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