Functional representation of the S-matrix in Liouville theory

George Jorjadze, Stefan Theisen, Lado Razmadze

Forschungszentrum Jülich

August 10, 2024

Motivation

- Liouville Theory [Liouville 1853] is one of the most well-studied Conformal Field Theories
 - Scalar field in 1+1d in an exponential potential $V(\Phi)=2\mu^2e^{2\Phi}, \ \mu$ "Cosmological constant"
 - Possesses conformal symmetry
 - Describes 2D gravity, bosonic strings [Dorn, Otto 1994] [Teschner 2001]

Setup

ullet $(au,\sigma)\in\mathbb{R}^1 imes\mathbb{S}^1$ - Cylinder

$$\partial_{\tau}^2 \Phi - \partial_{\sigma}^2 \Phi + 4\mu^2 e^{2\Phi} = 0$$

Work in chiral coordinates

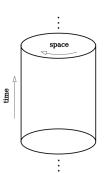
$$x = \tau + \sigma, \quad \bar{x} = \tau - \sigma$$

General solution

$$e^{-\Phi} = e^{-\Phi_{\rm in}} + e^{-\Phi_{\rm out}}$$

Asymptotic fields

$$\Phi \xrightarrow{\tau \to \mp \infty} \Phi_{\text{in/out}}$$



Classical Solution

• $\Phi_{\text{in/out}}$ satisfy the free field equation (zero mode + oscillations)

$$\Phi_{\mathsf{in}}(x,\bar{x}) = q + p \frac{x + \bar{x}}{2} - i \sum_{m > 0} \frac{a_m}{m} e^{-imx} - i \sum_{m > 0} \frac{\bar{a}_m}{m} e^{-im\bar{x}}$$

Poisson brackets are given as

$$\{p,q\} = 1 \ \{a_m, a_n\} = \frac{i}{2} m \delta_{m,-n} \ \{\bar{a}_m, \bar{a}_n\} = \frac{i}{2} m \delta_{m,-n}$$

• For the out-field $q \to \tilde{q}, \ p \to \tilde{p} = -p$ and $a_m \to b_m$

Classical solution

 Using the general solution and the Poisson brackets we can directly relate in and out fields [Teschner 2001]

$$e^{-\Phi_{\rm out}(x,\bar{x})} = \mu^2 e^{-\Phi_{\rm in}(x,\bar{x})} \frac{e^{2\pi p}}{\sinh^2(2\pi p)} \int_0^{2\pi} \!\!\! dy \int_0^{2\pi} \!\!\! d\bar{y} \, e^{2\Phi_{\rm in}(x+y,\bar{x}+\bar{y})}$$

- Non-perturbative relation
- Aim:
 - Find a quantum version of this relation
 - Use it to study transition amplitudes

Quantization

• Canonical quantization[Dirac, 1982] maps modes to operators

$$p \to \hat{p}, q \to \hat{q}, a_n \to \hat{a}_n, a_{-n} \to \hat{a}_n^{\dagger} \dots$$

and Poisson brackets to commutators

$$\{\cdot,\cdot\} o rac{i}{\hbar}[\cdot,\cdot]$$

Quantization

Relation between quantum in/out fields [Teschner 2001]

- $\mu_a^2 = \mu^2 \frac{\sin(\pi \hbar)}{\pi \hbar}$ Renormalized cosmological constant
- : · · · : Normal ordering

Fock Space

ullet Asymptotic vacuum states - $|\cdot\rangle_{\mathsf{in/out}}$ are defined as

$$_{\mathrm{out}}\langle \tilde{p}|p\rangle_{\mathrm{in}}=\delta(\tilde{p}+p)R(p)$$

 \bullet R(p) is known as reflection ampitude and we can write

$$|p\rangle_{\mathsf{in}} = R(p)|-p\rangle_{\mathsf{out}}$$

Fock Space

• Asymptotic coherent states are defined using vacuum states

$$|p, a_k\rangle_{\mathsf{in}} = \exp\left(\frac{2}{\hbar} \sum_{k>0} \frac{a_k}{k} \hat{a}_k^{\dagger}\right) |p\rangle_{\mathsf{in}}$$

$$\mathsf{out}\langle \tilde{p}, b_l^*| = \mathsf{out}\langle \tilde{p}| \exp\left(\frac{2}{\hbar} \sum_{l>0} \frac{b_l^*}{l} \hat{b}_l\right)$$

Coherent states are eigenstates of the creation operators

$$\begin{split} \hat{a}_k | p, \, a_k \rangle_{\text{in}} &= a_k | p, \, a_k \rangle_{\text{in}} \\ _{\text{out}} \langle \tilde{p}, \, b_l^* | b_l^\dagger &= _{\text{out}} \langle \tilde{p}, \, b_l^* | b_l^* \end{split}$$

S-Matrix

• Definition of the S-Matrix as the transition amplitude

$$\mathsf{out}\langle \tilde{p}, b_l^* | p, a_k \rangle_\mathsf{in} = \delta(\tilde{p} + p) R(p) S_p(b_l^*, a_k)$$

Note:

$$\exp\left(\frac{2}{\hbar}\sum_{l>0}\frac{b_l^*}{l}\hat{b}_l\right)|p\rangle_{\mathsf{in}} = |p\rangle_{\mathsf{in}} \quad \Rightarrow \quad S_p(b_l^*,0) = 1$$

and similarly $S_p(0, a_k) = 1$

- Aim: Find expressions for $S_p(b_1^*, a_k)$ and R(p)
- By projecting the asymptotic field relation between the coherent states we derive a recurrence in a_k and b_i^*
- By setting $a_k = b_l^* = 0$ we get function equation for R(p)

$$R(p) = \frac{\pi^2 \mu_q^2 \gamma_p^2}{\sinh(\pi p) \sinh(\pi p - i\pi \hbar)} R(p - i\hbar)$$

with

$$\gamma_p = \int_0^{2\pi} \frac{dy}{2\pi} e^{(p-i\hbar)(y-\pi)} (1 - e^{iy})^{\hbar} = \frac{\Gamma(1+\hbar)}{\Gamma(1-ip)\Gamma(1+\hbar+ip)}$$

Reflection Amplitude

• This recurrence is solved to get

$$R(p) = -(\mu_q^2 \Gamma^2(\hbar))^{-\frac{ip}{\hbar}} \frac{\Gamma(ip/\hbar)\Gamma(ip)}{\Gamma(-ip/\hbar)\Gamma(-ip)}$$

 The result is in excellent agreement with the well known DOZZ formula
 [Dorn, Otto 1994]
 [Zamolodchikov, Zamolodchikov 1996]

First Level Transition

- \bullet Using the expression for R(p) recursion for the $S\!\text{-matrix}$ is derived
- In the case of $b_l^* = 0$ it simplifies to

$$S_p\left(-\frac{i\hbar}{2}e^{-ilx}, a_k\right) = \exp\left(-i\sum_{m>0} \frac{a_m}{m}e^{-imx}\right) \times$$

$$\frac{1}{\gamma_p} \int_0^{2\pi} \frac{dy}{2\pi} e^{(p-i\hbar)(y-\pi)} (1 - e^{iy})^{\hbar} \exp\left(2i\sum_{m>0} \frac{a_m}{m}e^{-im(x+y)}\right)$$

First Level Transition

• S is holomorphic \Rightarrow Expand and collect terms linear in a_1 to get the First level transition

$$S_{-1,1}(p) = \frac{2}{\hbar} \frac{1 + \hbar - ip}{1 + \hbar + ip}$$

• Similar to R(p) this also agrees with the results in [Zamolodchikov, Zamolodchikov 1996]

• To continue we define

$$U_p(b_l^*, a_k) = \exp\left(-\frac{2}{\hbar} \sum_{m>0} \frac{b_m^* a_m}{m}\right) S_p(b_l^*, a_k)$$

• At $b_l^*=a_l^*$ introduce new notation $U_p(a_n)$ which coincides with the normal symbol for the S-matrix with $n \neq 0$

• At $p=i\hbar N$ where $N\in\mathbb{Z}^+$ we can write a recursive relation

$$U_{i\hbar N}(a_n) = \frac{1}{\gamma_{i\hbar N}} \int_0^{2\pi} \frac{dy}{2\pi} e^{i(N-1)\hbar(y-\pi)} \exp\left(2i \sum_{m>0} \frac{a_m}{m} e^{-im(x+y)}\right)$$
$$\times U_{i\hbar(N-1)} \left(a_n + \frac{i\hbar}{2} e^{inx} - i\hbar\theta_n e^{in(x+y)}\right)$$

With

$$\theta_n = \begin{cases} 0 & n < 0 \\ 1 & n > 0 \end{cases}$$

• Assuming no scattering at p=0 i.e. $U_0(a_n)=1$ we get the same result as from the path integral representation of the S-matrix [Jorjadze, Theisen 2021]

$$U_{i\hbar}(a_n) = 1 + \sum_{\nu \geq 2} \frac{1}{\nu!} \sum_{n_1 \cdots n_{\nu}} \frac{j_{n_1} \cdots j_{n_{\nu}}}{|n_1| \cdots |n_{\nu}|} \delta_{n_1 \cdots n_{\nu}}, \quad j_n = 2i\epsilon(n) a_n$$

• We can analytically write the solution of $U_{i\hbar N}(a_n)$ in the form of an N-dimensional integral

$$U_N(a_n) = \prod_{\alpha=1}^N \frac{1}{\gamma_{i\hbar\alpha}} \oint \frac{d\zeta_1}{2\pi i \zeta_1} \cdots \oint \frac{d\zeta_N}{2\pi i \zeta_N}$$

$$\exp\left(2i \sum_{n>0} \frac{a_n}{n} (\zeta_1^{-n} + \cdots \zeta_N^{-n})\right) \prod_{1 < \alpha < \beta < N} (\zeta_\alpha \zeta_\beta)^{\hbar} (\zeta_\alpha - \zeta_\beta)^{-2\hbar}$$

- These are Dotsenko-Fateev type integrals
- The results can be analytically continued to $N \notin \mathbb{Z}^+$

Acknowledgments

• This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) FR-23-17899.

Thank You!

Bibliography

- J. Teschner, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158]
- G. Jorjadze and S. Theisen, JHEP 02 (2021) 111 [arXiv:2011.06876 [hep-th]]
- **3** G. Jorjadze and S. Theisen, PoS(Regio2020) **394** (2021) 013
- H. Dorn and H. J. Otto, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141]
- A. B. Zamolodchikov and A. B. Zamolodchikov, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136]

Quantum Fields

$$: e^{-\Phi_{\text{out}}(x,\bar{x})} := e^{-q_{\text{out}}+p\tau} \bar{E}_{\text{out}}^{\; (-1)\dagger}(\bar{x}) E_{\text{out}}^{\; (-1)\dagger}(x) E_{\text{out}}^{\; (-1)}(x) \bar{E}_{\text{out}}^{\; (-1)}(\bar{x})$$

$$: e^{-\Phi_{\text{in}}(x,\bar{x})} := e^{-q_{\text{in}}+p\tau} \bar{E}_{\text{in}}^{\; (-1)\dagger}(\bar{x}) E_{\text{in}}^{\; (-1)\dagger}(x) E_{\text{in}}^{\; (-1)}(x) \bar{E}_{\text{in}}^{\; (-1)}(\bar{x})$$

$$: e^{2\Phi_{\text{in}}(z,\bar{z})} := e^{2q_{\text{in}}+p(z+\bar{z}-2\pi)} \bar{E}_{\text{in}}^{\; (2)\dagger}(\bar{z}) E_{\text{in}}^{\; (2)\dagger}(z) E_{\text{in}}^{\; (2)}(z) \bar{E}_{\text{in}}^{\; (2)}(\bar{z})$$

$$E_{\text{in}}^{(-1)}(x) = \exp\left(-i\sum_{m>0} \frac{a_m}{m} e^{-imx}\right)$$
$$E_{\text{in}}^{(2)}(z) = \exp\left(2i\sum_{m>0} \frac{a_m}{m} e^{-imz}\right)$$

Quantum Fields

$$\operatorname{out}\langle \tilde{p}, b_l^* | : e^{-\Phi_{\operatorname{out}}(x, \bar{x}^-)} : |p, a_k\rangle_{\operatorname{in}} = \delta(\tilde{p} + p - i\hbar) e^{(p - i\hbar/2)\tau} R(p)$$

$$\exp\left(i \sum_{m>0} \frac{b_m^*}{m} e^{imx}\right) S_p\left(b_m^* - \frac{i\hbar}{2} e^{-ilx}, a_k\right)$$

