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Greetings!

Warm greetings to all present. Based on arXiv:2201.01187v1 [quant-ph] in collaboration with

Dr. Akrami, Mathematics Department, IPM Institute in Fundamental Sciences, Tehran, Iran.


https://arxiv.org/abs/2201.01187v1

Overview

@ Prologue @ Schroédinger Equation Revised

@ Geometric Classical Mechanics @ Uncertainty Relations

@ Geometric Quantum Mechanics @ Outlook For The Future
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Prologue:

A Query In Quantum

Formulation



A Query In Quantum Formulation

Exploiting general Theory of Relativity into Quantum Theory, or vise versa?

Figure I. Roughly picturing Minkowskian Space Figure Il. Roughly picturing Riemannian Manitold
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Geometric Classical

Mechanics:
On The Virtue of Manifolds



Differential and Manifold Geometry

Mathematical Frame: Symplectic Manifold

i. (), : symplectic form, i.e. a closed non-degenerate 2-form

ii. (I, 0): symplectic manifold, i.e. a manifold I equipped with the symplectic form {2

iii. Tp(I) = (OF,p / Sr,p)*: Tangent space forp € I

Observation.
Phase Space is a Symplectic Manitold!
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Mathematical Motive Physical Motive

Structure - Preserving Diffeomorphisms? Evolution of Physical System?

i. Vectorfield X:I' - T(I"),symplectic  i. f isan observable

structure preserved under “motion” of X  ii. X is alocally Hamiltonian

along I' if diy) = 0 Vector Field

li. iyf2isclosed and exact

= 3f, f:T - Rs.t. i,0 =df

Intro to Hamiltonian Mechanics:

Canonical transformations!
= Xfaz .Qabaafa
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Algebra

Topological Space of Observables Evolution

Derivation
O, ={fIf:T - R, smooth}
Ly

f.Q — O = iny — iyLX

Poisson Bracket = i[x y]

For F,G €0, {F, @}Cl

Therefore,
= (0,109 (3,9) = O(Xp, X5)

Hamilton's

equations in hand!
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Geometric Quantum Theory:

Geometry mirrors Algebra



Quantum Algebra

Algebraic Structures on 0, Classical Analogue
i. Lie Bracket i. Dirac Quantization
oA L 1 .. 4 R, SN
For F,Ge0gy, {F, G}qu = |F, G| < {f. 93 = |F, G]qu
. " ] 1 A ~
= A Lie "structure” on Og,, ! > |F,G| = fg (pointwise)
ii. Jordan Product \ ¥
1 ii. Derivation
RG) = [R0) X
{ g FE R A For F, G,HEOqu,
= A commutative structure on O, !
qu B (A T _ (A (F 0
{r {G,H}+}+ = {6, ,H}qu}+ + {{

PROFOUND SIMILARITIES, YET A CRUCIAL
DIFFERENCE: Non-associativity of Jordan Product

However, is under control! .

(F.6.1).}, -|(F.6),. 7] = (§>2 (.8}
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Geometrizing Algebraic Structure

Expressing Algebraic Properties On H Exploiting The Properties In Differential Topology
H as a real vector space. Then: As a symplectic manifold:
i. Complex Structure On Real Vector Space ( ] is an isometric symplectomorphism by (1.1), (2)
J:H - H = < G isa positive — definite real inner product by (1.2)
' \  is skew — symmetric by (1.3)
¥ iy
ii. Inner Product On Rea|1Vec’ror Space
i
For @, WeH O,¥Y)=—G(D,¥) +—N(D,¥
or,¥eH,  (,¥)=G(P,¥)+-0(P,¥)
(0,0) = o, j0)  (11)
(D, W) =(D,¥)=2<G(D,¥V)=GCW,P) (1.2) In particular, as a nice
\-Q(@» ¥)=-02%, ) (1.3) Kahler manitfold!

Relationship Between G, 2 and ]
GUJ®,J¥) =GV, P)and 2(JD,J¥) = 2(¥,P) (2)
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Construction of Kahler manifold

Through the lens of Differential Geometry:
0,G:TyH X TyH — R

strongly non-degenerate bilinear forms

The Final Frame:
J- complex structure
G: real inner product

): skew-symmetric closed 2-form (dy {2 = 0)

= (H, ,]) is a Kdhler manifold equipped

with real inner-product G!
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Schrédinger Equation:

Mathematical



Vector Fields on H

Observation.
FeOy,; F:H->HYw»AY
= is by definition a vector field on H

Associated Schrédinger vector field:

1 .
Ys:H > H WV o —ﬁjF‘IJ

Derivation of Schrédinger equation:

d _ ) ] ]
(dF)(p) = —(¥ + m,F (¥ + tn))‘tzo = (¢, Fy) + (n, F¥) = 2 Re(n, F)

1 R .
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Equivalence to Hamilton’s Equation

Theorem.

The Schrodinger vector field Yz determined by the observable F € Oqu

& Hamiltonian vector field X generated by the expectation value of F.
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Uncertainty Relations:
Back To Algebra




i. Poisson Brackets

Algebraic Operations On The Expectation value Functions

Induced by the Lie bracket:
For FER€0,,  ({BR) ):H-R

(- 11[B.R]) @) = = ((Fw,RW) - (RY, F¥))= 2 im(Fy, Ry) = = 0(Fy, Rp)
= (Yier) (W) = 2(Yp, Yg) = 2(Xp, Xg) = {F,K}

= The induced algebraic operation is a Poisson Bracket.

(With respect to the quantum symplectic structure!)

Geometric Quantum Mechanics
Aug. 2024
A. Dadras



i, Riemann Brackets

Algebraic Operations On The Expectation value Functions

Induced by the Jordan product:

= The induced algebraic operation is a Riemann Bracket.
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Uncertainty of Observables

(With respect to the quantum symplectic structure!)
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Conclusion & Outlook For
The Futur

1. Exploiting more algebraic properties into geometric
properties

2. Proposing Killing vector tields on the Hilbert space

3. Proposing Killing vector tields on the Hilbert space

4. Imbedding gravity in these geometric properties
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FUNDAMENT.

[Curtain.]

Thank you!
10 Aug, 2024
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