

Geometric Quantum Mechanics: Greening Quantum Gravity's Arid Boxes

Amirhossein Dadras, IPM Institute of Fundamental Sciences ICPS 2024

Greetings!

Warm greetings to all present. Based on <u>arXiv:2201.01187v1</u> [quant-ph] in collaboration with Dr. Akrami, Mathematics Department, IPM Institute in Fundamental Sciences, Tehran, Iran.

Overview

- 01 Prologue
- 02 Geometric Classical Mechanics
- 03 Geometric Quantum Mechanics

- 04 Schrödinger Equation Revised
- 05 Uncertainty Relations
- 06 Outlook For The Future

"Scene 1"

Prologue: A Query In Quantum Formulation

A Query In Quantum Formulation

Exploiting general Theory of Relativity into Quantum Theory, or vise versa?

Figure I. Roughly picturing Minkowskian Space

Figure II. Roughly picturing Riemannian Manifold (Γ, g)

"Scene 11"

Geometric Classical Mechanics: On The Virtue of Manifolds

Differential and Manifold Geometry

Mathematical Frame: Symplectic Manifold

- i. Ω_{ab} : symplectic form, i.e. a closed non-degenerate 2-form
- ii. (Γ,Ω) : symplectic manifold, i.e. a manifold Γ equipped with the symplectic form Ω
- iii. $Tp(\Gamma) \cong (O_{\Gamma,p} / S_{\Gamma,p})^*$: Tangent space for $p \in \Gamma$

Observation.

Phase Space is a Symplectic Manifold!

Geometric Quantum Mechanics

Schrödinger Equation Revised

Uncertainty Relations

Outlook For The Futur

Mathematical Motive Physical Motive

Structure - Preserving Diffeomorphisms?

- Vector field $X: \Gamma \to T(\Gamma)$, symplectic structure preserved under "motion" of X
- along Γ if $di_X\Omega = 0$

Evolution of Physical System?

- i. *f* is an observable
- ii. X is a locally Hamiltonian

Vector Field

$\Rightarrow \exists f, f: \Gamma \rightarrow \mathbb{R} \text{ s.t. } i_{x}\Omega = df$

$$\Rightarrow X_f^a = \Omega^{ab} \partial_a f^a$$

Intro to Hamiltonian Mechanics: Canonical transformations!

Equation

Quantum dechanics

Uncertainty Relations

The Futur

Algebra

Topological Space of Observables

$$O_{cl} := \{f | f : \Gamma \to \mathbb{R}, smooth\}$$

Poisson Bracket

For
$$F, G \in O_{cl}$$
, $\{\widehat{F}, \widehat{G}\}_{cl}$

$$\coloneqq (\partial_a f) \Omega^{db}(\partial_b g) = \Omega(X_F, X_G)$$

 \rightarrow A Lie "structure" on O_{qu} !

Evolution

Derivation

$$\mathcal{L}_{X_f} \Omega = 0 \Rightarrow \mathcal{L}_X i_Y - i_Y \mathcal{L}_X$$
$$= i_{[X,Y]}$$

Therefore, Hamilton's equations in hand!

Geometry

Motive

Algebra

Geometric Quantum Mechanics

Equation

Uncertainty Relations

The Futur

"Scene III"

Geometric Quantum Theory: Geometry mirrors Algebra

Quantum Algebra

Algebraic Structures on $oldsymbol{o}_{qu}$

i. Lie Bracket

For
$$\hat{F}$$
, $\hat{G} \in O_{qu}$, $\{\hat{F}, \hat{G}\}_{qu} := \frac{1}{i\hbar} [\hat{F}, \hat{G}]$
 \Rightarrow A Lie "structure" on O_{qu} !

ii. Jordan Product

$$\{\widehat{F}, \widehat{G}\}_{+} := \frac{1}{2} [\widehat{F}, \widehat{G}]_{+}$$

 \Rightarrow A commutative structure on $O_{qu}!$

Classical Analogue

. Dirac Quantization

$$\begin{cases} \widehat{\{f,g\}}_{cl} = \left[\widehat{F},\widehat{G}\right]_{qu} \\ \frac{1}{2}\left[\widehat{F},\widehat{G}\right]_{+} = fg \text{ (pointwise)} \end{cases}$$

ii. Derivation

$$\operatorname{For} \widehat{F}, \widehat{G}, \widehat{H} \in O_{qu},$$

$$\left\{ \widehat{F}, \left\{ \widehat{G}, \widehat{H} \right\}_{+} \right\}_{+} = \left\{ \widehat{G}, \left\{ \widehat{F}, \widehat{H} \right\}_{qu} \right\}_{+} + \left\{ \left\{ \widehat{F}, \widehat{G} \right\}_{qu}, \widehat{H} \right\}_{+}$$

PROFOUND SIMILARITIES, YET A CRUCIAL DIFFERENCE: Non-associativity of Jordan Product

However, is under control! $\left\{\widehat{F},\left\{\widehat{G},\widehat{H}\right\}_{+}\right\}_{+} - \left\{\left\{\widehat{F},\widehat{G}\right\}_{+},\widehat{H}\right\}_{+} = \left(\frac{\hbar}{2}\right)^{2} \left\{\widehat{G},\left\{\widehat{F},\widehat{H}\right\}_{qu}\right\}_{qu}$

- Q Algebra
- Q Geometry
- Kähler Manifold

Geometric Classical Mechanics

Geometric Quantum Mechanics

Schrödinge Equation Revised

Uncertainty Relations

Outlook Fo The Futur

Geometrizing Algebraic Structure

Expressing Algebraic Properties On *H*

H as a real vector space. Then:

Complex Structure On Real Vector Space

$$J: H \to H$$
$$\Psi \mapsto i\Psi$$

i. Inner Product On Real Vector Space For
$$\Phi, \Psi \in H$$
, $\langle \Phi, \Psi \rangle = \frac{1}{2\hbar} G(\Phi, \Psi) + \frac{i}{2\hbar} \Omega(\Phi, \Psi)$

$$\langle \Phi, \Psi \rangle = \overline{\langle \Phi, \Psi \rangle} \Rightarrow \begin{cases} \langle \Phi, \Phi \rangle = \langle J\Phi, J\Phi \rangle & (1.1) \\ G(\Phi, \Psi) = G(\Psi, \Phi) & (1.2) \\ \Omega(\Phi, \Psi) = -\Omega(\Psi, \Phi) & (1.3) \end{cases}$$

Relationship Between G, Ω and J

$$G(J\Phi, J\Psi) = G(\Psi, \Phi) \text{ and } \Omega(J\Phi, J\Psi) = \Omega(\Psi, \Phi)$$
 (2)

Exploiting The Properties In Differential Topology

As a symplectic manifold:

J is an isometric symplectomorphism by (1.1), (2) $\Rightarrow \langle G \text{ is a positive} - \text{definite real inner product by } (1.2)$ Ω is skew – symmetric by (1.3)

> In particular, as a nice Kähler manifold!

Geometric Quantum Mechanics

Equation

Uncertainty Relations

H As Kähler Manifold

Construction of Kähler manifold

Through the lens of Differential Geometry:

 $\Omega, G: T_{\psi}H \times T_{\psi}H \rightarrow \mathbb{R}$

strongly non-degenerate bilinear forms

The Final Frame:

J: complex structure

G: real inner product

 Ω : skew-symmetric closed 2-form $(d_{\Psi}\Omega = 0)$

 \Rightarrow (*H*, Ω ,*J*) is a Kähler manifold equipped with real inner-product G!

"Scene IV"

Schrödinger Equation: Mathematical

Vector Fields on H

Observation.

$$\hat{F} \in O_{qu}$$
; $\hat{F}: H \to H, \Psi \mapsto \hat{A}\Psi$

 \Rightarrow is by definition a vector field on H

Associated Schrödinger vector field:

$$Y_{\widehat{F}}: H \to H, \Psi \mapsto -\frac{1}{\hbar}J\widehat{F}\Psi$$

Derivation of Schrödinger equation:

$$(dF)(\eta) = \frac{d}{dt} \langle \Psi + t\eta, \widehat{F}(\Psi + t\eta) \rangle \Big|_{t=0} = \langle \Psi, \widehat{F}\eta \rangle + \langle \eta, \widehat{F}\Psi \rangle = 2 \operatorname{Re} \langle \eta, \widehat{F}\psi \rangle$$
$$= \frac{1}{\hbar} G(\widehat{F}\Psi, \eta) = G(JY_{\widehat{F}}(\Psi), \eta) = \Omega(Y_{\widehat{F}}, \eta) = i_{Y_F} \Omega$$

Equivalence to Hamilton's Equation

Theorem.

The Schrödinger vector field $Y_{\widehat{F}}$ determined by the observable $\widehat{F} \in O_{qu}$

 \Leftrightarrow Hamiltonian vector field X_F generated by the expectation value of F.

"Scene vi"

Uncertainty Relations: Back To Algebra

i. Poisson Brackets

Algebraic Operations On The Expectation value Functions

Induced by the Lie bracket:

For
$$\widehat{F}$$
, $\widehat{K} \in O_{qu}$, $\left\langle \left\{ \widehat{F}, \widehat{K} \right\}_{qu} \right\rangle : H \to \mathbb{R}$

$$\left\langle -\frac{1}{\hbar} J[\widehat{F}, \widehat{K}] \right\rangle (\Psi) = \frac{1}{i\hbar} \left(\left\langle \widehat{F}\Psi, \widehat{K}\Psi \right\rangle - \left\langle \widehat{K}\Psi, \widehat{F}\Psi \right\rangle \right) = \frac{2}{\hbar} \operatorname{Im} \left\langle \widehat{F}\psi, \widehat{K}\psi \right\rangle = \frac{1}{\hbar^2} \Omega \left(\widehat{F}\psi, \widehat{K}\psi \right)$$

$$\Rightarrow \left\langle Y_{[\widehat{F},\widehat{K}]} \right\rangle (\Psi) = \Omega (Y_{\widehat{F}}, Y_{\widehat{K}}) = \Omega (X_{\widehat{F}}, X_{\widehat{K}}) = \{F, K\}$$

 \Rightarrow The induced algebraic operation is a Poisson Bracket.

(With respect to the quantum symplectic structure!)

ii. Riemann Brackets

Algebraic Operations On The Expectation value Functions

Induced by the Jordan product:

$$\left\langle \left\{ \widehat{F}, \widehat{K} \right\}_{+} \right\rangle : H \to \mathbb{R}$$

$$\left\langle \frac{1}{2} \left[\widehat{F}, \widehat{K} \right]_{+} \right\rangle (\Psi) = \frac{1}{2} \left(\left\langle \widehat{F}\Psi, \widehat{K}\Psi \right\rangle + \left\langle \widehat{K}\Psi, \widehat{F}\Psi \right\rangle \right) = \frac{1}{2\hbar} G(\widehat{F}\psi, \widehat{K}\psi)$$

$$\Rightarrow \left\langle \frac{1}{2} \left[\widehat{F}, \widehat{K} \right]_{+} \right\rangle (\Psi) = \frac{\hbar}{2} G(Y_{\widehat{F}}, Y_{\widehat{K}}) = \frac{\hbar}{2} G(X_{\widehat{F}}, X_{\widehat{K}})$$

 \Rightarrow The induced algebraic operation is a Riemann Bracket.

A. Dadras

Uncertainty of Observables

Geometric Classical Mechanics

Quantum Mechanics

Equation Revised

- Poisson Brackets
- Riemann Brackets
- Uncertainty

Uncertainty Relations

The Futur

Geometric Quantum Mechanics Aug. 2024 A. Dadras

Algebraic Operations On The Expectation value Functions

Induced by the Lie bracket:

$$\left(\Delta \widehat{F}\right)^{2} = \left\langle\widehat{F}\right\rangle - F^{2} = \left\{\widehat{F}_{1}\widehat{F}\right\}_{+} - F^{2},$$

$$\left\langle-\frac{1}{\hbar}J[\widehat{F},\widehat{K}]\right\rangle(\Psi) = \left(\Delta \widehat{F}\right)^{2} \left(\Delta \widehat{K}\right)^{2} \ge \left\langle-\frac{i}{2}[\widehat{F},\widehat{K}]\right\rangle^{2} = \left(\frac{\hbar}{2}\{F,K\}_{qu}\right)$$

$$\Rightarrow \left(\Delta \widehat{F}\right)^{2} \left(\Delta \widehat{K}\right)^{2} \ge \left\langle-\frac{i}{2}[\widehat{F},\widehat{K}]\right\rangle^{2} + \left\langle\frac{1}{2}[\widehat{F'},\widehat{K'}]\right\rangle_{+}^{2} , \widehat{F'}(\Psi) := \widehat{F}(\Psi) - F(\Psi)$$

$$\Rightarrow \left(\Delta \widehat{F}\right)^{2} \left(\Delta \widehat{K}\right)^{2} \ge \left(\frac{\hbar}{2}\{F,K\}_{qu}\right)^{2} + \left(\{F,K\}_{+} - FK\right)^{2}$$

(With respect to the quantum symplectic structure!)

Conclusion & Outlook For The Futur

- Exploiting more algebraic properties into geometric properties
- 2. Proposing Killing vector fields on the Hilbert space
- 3. Proposing Killing vector fields on the Hilbert space
- 4. Imbedding gravity in these geometric properties

Curtain.]

Thank you!
10 Aug, 2024