PBH overproduction bounds on LISA PT target sources

Master's Dissertation Presentation @ ICPS 2024 — Georgia

Daniel Lozano Jarque

supervised by Dr. Diego Blas Temiño (IFAE/ICREA) & Dr. Gabriele Franciolini (CERN)

Universitat Autònoma de Barcelona

9th August 2024

Sociedad Española de Física

Real

Daniel Lozano Jarque (UAB)

Master's Dissertation

9th August 2024

1/28

Table of contents

Introduction

- 2 Cosmological Phase Transitions
 - Introduction
 - Types of PTs

3 PBH formation

- Supercooled 1stOPTs
- Mechanism

GW signatures

- 5 LISA PT sources parameter space
 - 6 Conclusions

Introduction

• Laser Interferometer Space Antenna (LISA)

- Space probe to measure low freq. GW
- First space-based GW observatory
- Planned launch date: 2035

• Cosmological Phase Transitions

- SSB of nature symmetries
- First order and second order PTs
- SBGW¹ production [LISA detection]
- Primordial Black Holes (PBH) formation
 - Supercooled cosmological PTs (α, β)
 - Good dark matter (DM) candidate $f_{\rm PBH} \neq 0$

OUR AIM: constrain LISA PT target sources parameter space (α, β) through **PBH overproduction bounds** $f_{PBH} \ge 1$ formed by CPTs.

¹Stochastic Background of Gravitational Waves

< □ > < 同 > < 三 > <

Introduction

• Laser Interferometer Space Antenna (LISA)

- Space probe to measure low freq. GW
- First space-based GW observatory
- Planned launch date: 2035

Cosmological Phase Transitions

- SSB of nature symmetries
- First order and second order PTs
- SBGW¹ production [LISA detection]

• Primordial Black Holes (PBH) formation

- Supercooled cosmological PTs (α, β)
- Good dark matter (DM) candidate $f_{\rm PBH} \neq 0$

OUR AIM: constrain LISA PT target sources parameter space (α, β) through **PBH overproduction bounds** $f_{PBH} \ge 1$ formed by CPTs.

¹Stochastic Background of Gravitational Waves

Introduction

• Laser Interferometer Space Antenna (LISA)

- Space probe to measure low freq. GW
- First space-based GW observatory
- Planned launch date: 2035

• Cosmological Phase Transitions

- SSB of nature symmetries
- First order and second order PTs
- SBGW¹ production [LISA detection]

• Primordial Black Holes (PBH) formation

- Supercooled cosmological PTs (α, β)
- Good dark matter (DM) candidate $\mathit{f}_{\rm PBH} \neq 0$

<u>OUR AIM</u>: constrain LISA PT target sources parameter space (α, β) through **PBH overproduction bounds** $f_{PBH} \ge 1$ formed by CPTs.

¹Stochastic Background of Gravitational Waves

Introduction

• Laser Interferometer Space Antenna (LISA)

- Space probe to measure low freq. GW
- First space-based GW observatory
- Planned launch date: 2035

• Cosmological Phase Transitions

- SSB of nature symmetries
- First order and second order PTs
- SBGW¹ production [LISA detection]

• Primordial Black Holes (PBH) formation

- Supercooled cosmological PTs (α, β)
- Good dark matter (DM) candidate $f_{\rm PBH} \neq 0$

<u>OUR AIM</u>: constrain LISA PT target sources parameter space (α, β) through **PBH overproduction bounds** $f_{PBH} \ge 1$ formed by CPTs.

¹Stochastic Background of Gravitational Waves

Phase transitions: physical process of transition from one state of a medium and another

- e.g. solid-liquid transitions: ice melting into water @ Critical temperature T_C
- e.g. ferromagnetic-paramagnetic transition in magnetic materials
 © Curie temperature T_C

Cosmological phase transition: physical process where the overall state of matter changes together across the whole universe

- e.g. EW² phase transition when the Higgs mechanism was activated @ Electroweak scale T_{EW}
- e.g. BSM³ cosmological phase transitions

 $^{^{2}}$ Electroweak

³Beyond the Standard Model

Cosmological phase transition are driven by a scalar field ϕ with potential $V(\phi)$

- Spontaneous Symmetry Breaking (SSB): Underlying symmetries of nature not present in the vacuum (unified field gauge theories symmetry group is larger than that of the vacuum)
 - e.g. The SM⁴: $SU(3)_C \times SU_W(2) \times U_Y(1) \xrightarrow{\text{SSB}} SU(3)_C \times U_Q(1)$

• High temperature symmetry restoration

- Effective potential temperature dependence $V_{
 m eff}(\phi, \mathcal{T})$
- Vacuum state⁵ $\langle \phi(\mathcal{T}) \rangle^6$ depends on T

⁴Standard Model.

⁵State of lowest energy i.e. minimum of the potential $V(\phi, T)$

⁶QFT are built on excitations over vacuum states.

5/28

< □ > < □ > < □ > < □ > < □ > < □ >

Cosmological phase transition are driven by a scalar field ϕ with potential $V(\phi)$

- Spontaneous Symmetry Breaking (SSB): Underlying symmetries of nature not present in the vacuum (unified field gauge theories symmetry group is larger than that of the vacuum)
 - e.g. The SM⁴: $SU(3)_C \times SU_W(2) \times U_Y(1) \xrightarrow{\text{SSB}} SU(3)_C \times U_Q(1)$

• High temperature symmetry restoration

- Effective potential temperature dependence $V_{
 m eff}(\phi, \mathcal{T})$
- Vacuum state⁵ $\langle \phi(T) \rangle^6$ depends on T

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

⁴Standard Model.

⁵State of lowest energy i.e. minimum of the potential $V(\phi, T)$

⁶QFT are built on excitations over vacuum states.

Cosmological scenario

Simple example of a potential describing a PT

$$V(\phi, T) = D(T^2 - T_0^2)\phi^2 + \frac{\lambda(T)}{4}\phi^4$$

Hot big bang theory:

- universe initially @ very high T: universe in the symmetric phase $\langle \phi(T) \rangle = 0$
- $T = T_c$, $\phi(T) = 0$ metastable
- $T < T_c$, $\phi(T) = \pm \sigma$ stable
- PT proceeds and universe transitions to the broken phase $\langle \phi(T) \rangle = \pm \sigma$

Figure 1: Example of a potential that implements SSB and sources a cosmological phase transition.

Types of cosmic PTs

• First-order phase transitions (1stOPTs):

• baryogenesis uses and SBGW production

• Second-order phase transitions (2ndOPTs)

• new inflationary models e.g. slow roll-down models

• Cross-over transitions (2ndOPT with finite correlation length ξ)

• e.g. EW phase transition in the SM

Second order PTs

Simple example of a potential describing a 2ndOPT

$$V(\phi, T)^{a} = D(T^{2} - T_{0}^{2})\phi^{2} + rac{\lambda(T)}{4}\phi^{4}$$

^aSM Higgs' potential-like

- Critical temperature $T_c = T_0$
- NO barrier between symmetric and broken phases
- PT achieved by thermal fluctuation for a field in the origin
- PT starts at T_c and occurs smoothly: no latent heat

Figure 2: Example of a potential that implements SSB and sources a second order phase transition.

False and true vacuum

The scalar field ϕ driving the transition has a potential $V(\phi, T)$ with

- False vacuum⁷: locally stable vacuum but not most stable possible ground state: metastable vacuum state
- True vacuum⁸: globally stable vacuum

⁷Vacuum in this sense means minimum of the potential.

⁸Physical vacuum state we live in, and from which we build QFTs.

First order PTs

Simple Example of a potential describing a 1stOPT

$$V(\phi, T)^{a} = D(T^{2} - T_{0}^{2})\phi^{2} - ET\phi^{3} + \frac{\lambda(T)}{4}\phi^{4}$$

^aCubic term provided by contribution from bosonic fields.

- Critical temperature $T_c > T_0$
- Barrier appears: supercooling
- PT achieved by tunnelling: quantum mechanical or thermal^b
- PT effectively starts at T_n through bubble nucleation^c

Figure 3: Example of a potential that implements SSB and sources a first order phase transition.

< □ > < □ > < □ > < □ > < □ > < □ >

10 / 28

^bThermal tunnelling is just tunnelling at finite temperature whereas quantum tunnelling is tunnelling at zero temperature.

^cA useful analogue is boiling water in which bubbles of steam form and expand as they rise to the surface.

False and true vacuum

The scalar field ϕ driving the transition has a potential $V(\phi, T)$ with

- False vacuum: locally stable vacuum
- True vacuum: globally stable vacuum

False vacuum decay \equiv 1st Order Cosmological Phase Transition

 $\text{False vacuum } \langle \phi(T) \rangle = 0 \xrightarrow[\text{Bubble nucleation}]{\text{Tunnelling}} \text{True vacuum } \langle \phi(T) \rangle = \sigma$

Figure 4: Schematic illustration of a first-order phase transition. Bubbles of the true vacuum are nucleated in the false vacuum. These expand, and collide. GW are sourced both by the bubble collisions themselves, and by the overlapping sound shells after the bubbles have merged.

< □ > < □ > < □ > < □ > < □ > < □ >

Supercooled 1stOPTs

Universe energy budget

 $\rho_{\rm tot} = \rho_V + \rho_R \quad \text{where} \quad \rho_R = \rho_{\rm wall} + \rho_{\rm plasma} + \rho_{\rm scalar} + \rho_{\rm th} + \rho_{\rm cool}$

- vacuum component ho_V initially given by latent heat ΔV
- radiation component ρ_R initially pre-existing super-cooled plasma

Total false vacuum decay rate per unit volume

$$\Gamma_V(t) = \max(\Gamma_{\mathrm{QT}}(t),\Gamma_{\mathrm{therm}}(t))$$

- QM tunneling contribution dominates for vacuum transitions and @ very low T for thermal transitions with barrier @ T = 0
- Thermal tunneling dominates @ high T

イロト 不得 トイヨト イヨト

3

Supercooled 1stOPTs

False vacuum decay rate \equiv Tunneling probability \equiv Bubble nucleation rate

Nucleation rate frequently taken⁹ to be $\Gamma(t) = A(t)e^{-B(t)}$

Exponential nucleation rate per unit of volume

$$\Gamma_V(t)^a = \Gamma_0 e^{eta t}$$
 with $\Gamma_0 = H^4(T_n) e^{-eta t_n}$

^aThis should be viewed as a Taylor-expansion of the bounce action around t_n at first order.

• Bubble nucleation instantaneous criterion $T = T_n \longleftrightarrow \Gamma_V(t) = \Gamma_0 = H^4(T_n)$

(4) (日本)

⁹False vacuum decay theory from finite temperature field theory.

Supercooled 1stOPTs paramater space: strength α and duration β^{-1}

• The "**strength**" (energy released) of the 1stOPTs is quantified by the latent heat

Strength of the 1stOPT — Latent Heat Parameter α

$$\alpha \equiv \frac{\rho_V}{\rho_R} \bigg|_{T=T_n} = \left(\frac{T_{\rm eq}}{T_{\rm n}}\right)^4 \equiv e^{4N_e}$$

• The "duration" (average time for bubbles to percolate¹⁰) of the 1stOPTs is defined through the nucleation rate

Duration of the 1stOPT β^{-1}

$$\beta \equiv \frac{1}{\Gamma_V} \frac{\mathrm{d}\Gamma_V}{\mathrm{d}t}$$

 10 Percolation time is the time when most of the vacuum energy has been converted into radiation (Ξ) (Ξ) (Ξ) $^{\circ}$ (\sim) (

PBH formation

Process of PBH formation from supercooled 1stOPT:

- QM or thermal tunnelling starts bubble nucleation
- Vacuum energy ρ_V converted into a mixture of relativistic species (bubble walls, relativistic kinetic and thermal energy, relativistic scalar waves...)

Time evolution of the energy densities (continuity equation)

$$\rho_R(t; t_{n_i})^a + 4H\rho_R(t; t_{n_i}) = -\dot{\rho}_V(t; t_{n_i}) \quad \text{with} \quad H = \sqrt{\frac{\rho_V + \rho_R}{3M_{\text{Pl}}^2}}$$

 ${}^{a}t_{n_{i}}$ is a free parameter setting the time at which the first bubble is nucleated in a given causal patch.

• Any delay of percolation in a specific causal patch¹¹ necessarily generates an overdensity of ρ_R wrt to the background.

 $^{^{11}}$ Synonym for Hubble patch: region of the universe surrounding an observer for which $v_{
m refc}$ (> c < \equiv) < \equiv) =

PBH formation

Process of PBH formation from supercooled 1stOPT:

• Any delay of percolation in a specific causal patch¹² necessarily generates an overdensity of ρ_R wrt to the background.

Radiation over-density of a lately-nucleated Hubble patch

$$\delta(t; t_{n_i}) \equiv rac{
ho_R^{ ext{late}}(t; t_{n_i}) -
ho_R^{ ext{bkg}}(t)}{
ho_R^{ ext{bkg}}(t)}$$

• if over-density of a lately nucleated patch reaches a threshold¹³

PBH formation criterion (based on Hoop's Conjecture)

If $\delta(t; t_{n_i}) > \delta_c = 0.45$ then this late Hubble patch collapses into a PBH^a

^aRegardless of the Particle Physics model used, model independent result!

 $^{12}\mathsf{Synonym}$ for Hubble patch: region of the universe surrounding an observer for which $v_{\mathrm{rec}} > c$

¹³Found by simulations based on Hoop's conjecture [1, 2]

Daniel Lozano Jarque (UAB)

Master's Dissertation

イロト 不得 トイヨト イヨト

Simulation of PBH formation from a supercooled 1stOPT

• Solving system of coupled ordinary 1st order IDEs¹⁴ for $\rho_R(t)$, a(t)

Time evolution of the energy densities (continuity equation)

$$ho_R(t;t_{n_i}) + 4H
ho_R(t;t_{n_i}) = -\dot{
ho}_V(t;t_{n_i}) \quad ext{with} \quad H = \sqrt{rac{
ho_V +
ho_R}{3M_{ ext{Pl}}^2}}$$

Vacuum energy density evolution

$$\rho_{V}(t;t_{n_{i}}) = F(t;t_{n_{i}})\Delta V \quad ; \quad F(t;t_{n_{i}}) = \exp\left\{-\int_{t_{n_{i}}}^{t} \mathrm{d}t' \Gamma_{V}(t') a(t')^{3} \frac{4\pi}{3} r^{3}(t;t')\right\}$$

• Can be carefully transformed into a set of 7 coupled 1st order $ODEs^{15}$ — easy to solve numerically!

Daniel Lozano Jarque (UAB)

< □ > < 同 > < 回 > < 回 > < 回 >

¹⁴Integro-Differential Equations

¹⁵Ordinary differential equations.

Simulation of PBH formation from a supercooled 1stOPT

Full expression of the system of coupled ordinary 1st order IDEs¹⁶

$$\begin{split} \frac{\mathrm{d}\rho_{R}(t;t_{n_{j}})}{\mathrm{d}t} + 4\rho_{R}(t;t_{n_{j}}) \times \\ \times \sqrt{\frac{1}{3M_{\mathrm{Pl}}^{2}} \left(\rho_{R}(t;t_{n_{j}}) + \Delta V \exp\left\{-\left(\frac{(1+\alpha^{-1})\Delta V}{3M_{\mathrm{Pl}}^{2}}\right)^{2} \int_{t_{n_{j}}}^{t} \mathrm{d}t' e^{\beta(t'-t_{n})} a(t')^{3} \frac{4\pi}{3} \left(\int_{t'}^{t} \mathrm{d}\tilde{t} \frac{v_{w}(\tilde{t})}{a(\tilde{t})}\right)^{3}\right\}\right)} \\ &= \Delta V \frac{v_{w}(t)}{a(t)} \exp\left\{-\left(\frac{(1+\alpha^{-1})\Delta V}{3M_{\mathrm{Pl}}^{2}}\right)^{2} \int_{t_{n_{j}}}^{t} \mathrm{d}t' e^{\beta(t'-t_{n})} a(t')^{3} \frac{4\pi}{3} \left(\int_{t'}^{t} \mathrm{d}\tilde{t} \frac{v_{w}(\tilde{t})}{a(\tilde{t})}\right)^{3}\right\} \\ &\times \left(\frac{(1+\alpha^{-1})\Delta V}{3M_{\mathrm{Pl}}^{2}}\right)^{2} \int_{t_{n_{j}}}^{t} \mathrm{d}t' e^{\beta(t'-t_{n})} a(t')^{3} 4\pi \left(\int_{t'}^{t} \mathrm{d}\tilde{t} \frac{v_{w}(\tilde{t})}{a(\tilde{t})}\right)^{2} \end{split}$$

$$\frac{1}{a(t)} \frac{\mathrm{d}a(t)}{\mathrm{d}t} = \sqrt{\frac{1}{3M_{\mathrm{Pl}}^2} \left(\rho_R(t; t_{n_i}) + \Delta V \exp\left\{-\left(\frac{(1+\alpha^{-1})\Delta V}{3M_{\mathrm{Pl}}^2}\right)^2 \int_{t_{n_i}}^t \mathrm{d}t' e^{\beta(t'-t_n)} a(t')^3 \frac{4\pi}{3} \left(\int_{t'}^t \mathrm{d}\tilde{t} \frac{v_w(\tilde{t})}{a(\tilde{t})}\right)^3\right\}\right)}$$

¹⁶Integro-Differential equations.

Simulation of PBH formation from a supercooled 1stOPT

Figure 5: Time evolution of vacuum (dotted) and radiation (solid) energy density during a supercooled 1stOPT.

19 / 28

Mechanism

Simulation of PBH formation from a supercooled 1stOPT

Figure 6: Effective equation of state (EoS) ω during a supercooled 1stOPT where the universe changes from a vacuum-like EoS $\omega = -1$ to a radiation EoS with $\omega = 1/3$.

PBHs as DM candidate

• To find the fraction of DM in the form of PBHs we first need

Probability of survival

$$P_{\text{surv}}(t_{n_i}; t_{\text{max}}) = \exp\left\{-\int_{t_c}^{t_{n_i}} \mathrm{d}t' \Gamma_V(t') a(t')^3 V(t'; t_{\text{max}})\right\}$$

• then the probability of a late Hubble patch to collapse into a PBH

Probability of collapse

$$P_{\rm coll} \equiv P_{\rm surv}(t_{n_i}^{\rm PBH}; t_{\rm max})$$

Fraction of DM in the form of PBHs

$$f_{\mathrm{PBH}} pprox \left(rac{P_{\mathrm{coll}}}{2.45 imes 10^{-12}}
ight) \left(rac{T_{\mathrm{eq}}}{500 \, \mathrm{GeV}}
ight)$$

GW signatures: types of sources

GW sources during 1stOPT can be split into:

- Collision of bubble walls
- Plasma sound waves
- Plasma turbulent flows

These sources may coexist and form the dominant source at different stages of the 1stOPT

Total SBGW is approx. a linear superposition of GW sources:

Total SBGW during a 1stOPT

$$\Omega_{
m gw} = \Omega_{\phi} + \Omega_{
m sw} + \Omega_{
m turb}$$

GW signatures: Scalar field ϕ

The collision of bubble walls generates GW

- when bubbles collide spherical symmetry is broken
- shear-stress in the gradients of ϕ source GW
- short-lived source of GW
- Two-possible models:
 - Envelope approximation
 - Bulk-flow model

GW power spectrum contribution from the scalar field ϕ :

$$\Omega_{\rm env,0}(f)^{a} = \Delta_{\rm env}(v_{w})\kappa^{2} \left(\frac{H_{*}}{\beta}\right)^{2} \left(\frac{\alpha}{\alpha+1}\right) \left(\frac{100}{g_{*}}\right)^{1/3} P_{\rm env}(f)$$

 $^{\rm a}{\rm 0}$ and * subindices correspond to quantities evaluated today and at the time of GW production.

GW signatures: acoustic waves

In thermal PTs:

- fluid shells develop around the bubble wall
- these propagate in the form of sound waves
- shear-stress in the plasma sound waves generates GW
- long-lasting source of GW
- decay through shocks

Plasma sound waves generate GW:

GW power spectrum contribution from the scalar waves

$$\frac{\mathrm{d}\Omega_{\mathrm{sw},0}}{\mathrm{d}\log\left(f\right)} = 7.34 \times 10^{-5} \Gamma^2 \overline{U}_f^4 \left(\frac{100}{g_*}\right)^{1/3} \left(H_*\tau_v\right) \left(\frac{H_*R_*}{c_s}\right) \tilde{\Omega}_{\mathrm{gw}} C\left(\frac{f}{f_{\mathrm{sw},0}}\right)$$

GW signatures: turbulence

In thermal PTs:

- fluid turbulent flows
- magnetic field: magnetohydrodynamic (MHD) turbulence
- also vorticity modes from decay of scalar waves

Kinetic and MHD turbulence are sources of GW:

GW power spectrum contribution from turbulence

$$\frac{\mathrm{d}\Omega_{\mathrm{turb},0}}{\mathrm{d}\log\left(f\right)} = 7.29 \times 10^{-4} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\mathrm{turb}}\alpha_{\theta}}{1+\alpha_{\theta}}\right)^{3/2} \left(\frac{100}{g_*}\right)^{1/3} v_w S_{\mathrm{turb}}(f)$$

LISA PT sources parameter space

Figure 7: LISA PT target sources parameter space (α, β) . The coloured lines show the SNR. The dotted straight lines are the contours of the fluid turnover time quantifying the effect of turbulence. In the gray shaded region the decay of sound waves into turbulence is less important than the Hubble damping and the SNR curve reflects this effect

Daniel Lozano Jarque (UAB)

Master's Dissertation

Conclusions

Summary

- Cosmological PTs are theoretical large scale vast phemomena
- 1stOPT can produce PBH¹⁷ in lately nucleated Hubble patch
- PBH as DM candidate can not exceed $f_{\rm PBH} \geq 1$
- this overproduction bound constrains LISA PT target sources parameter space (α, β)

Outlook and future work

Constantly advancing fields:

 $\bullet\,$ Better PBH collapse dynamics understanding & GW modelling

Inspired by Dvali's Monday talk:

• PBH evaporation implementation?

¹⁷Model independently!

PBH overproduction bounds on LISA PT target sources

Master's Dissertation Presentation @ ICPS 2024 — Georgia

Daniel Lozano Jarque

supervised by Dr. Diego Blas Temiño (IFAE/ICREA) & Dr. Gabriele Franciolini (CERN)

Universitat Autònoma de Barcelona

9th August 2024

Sociedad Española de Física

Real

Daniel Lozano Jarque (UAB)

Master's Dissertation

9th August 2024

28 / 28