

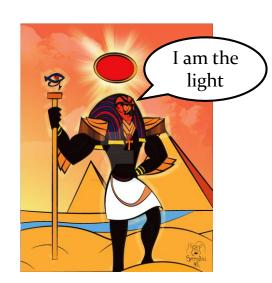
Real Sociedad Española de Física

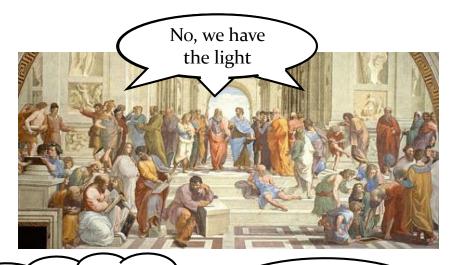
Trapping light at the nanoscale with 2D materials

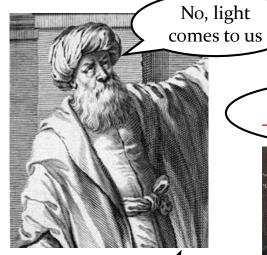
Andrés Núñez Marcos

ICPS Georgia 2024

Light is complicated

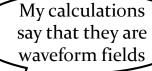


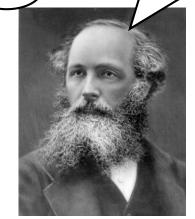


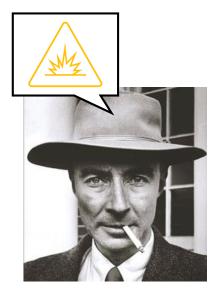


Yes, and it travels through the ether

In fact, light is both wave and particle at the same time

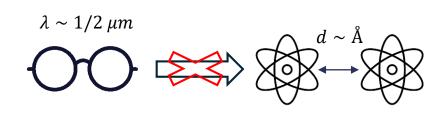


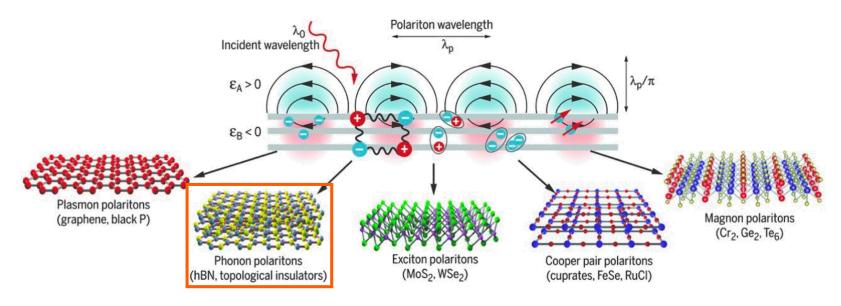




Light is brilliant

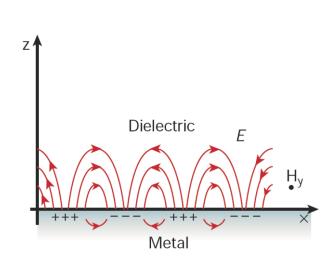
- ightharpoonup Diffraction limit $\rightarrow d \ge \lambda/2n$
- ➤ Ionizing lights are dangerous
- ➤ Light-matter interaction: **Polaritons**
- ➤ Although quantum, it can be explained through its classical wave nature



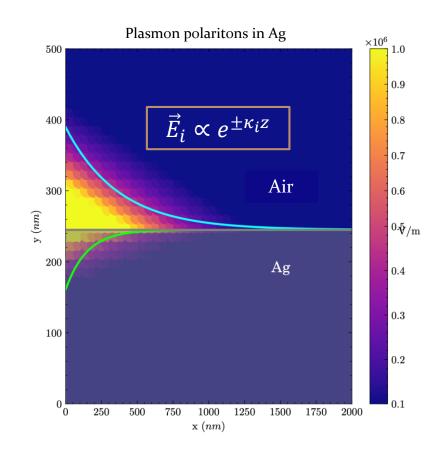


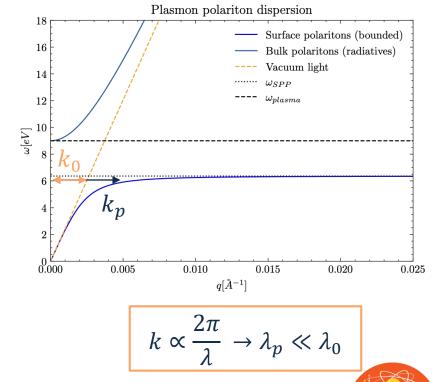
Main properties of polaritons

- ➤ Two mediums with opposite sign in electric permittivity
- Evanescent waves –exponential decay in the perpendicular propagation direction
- High confined waves that can not be excited only with natural light



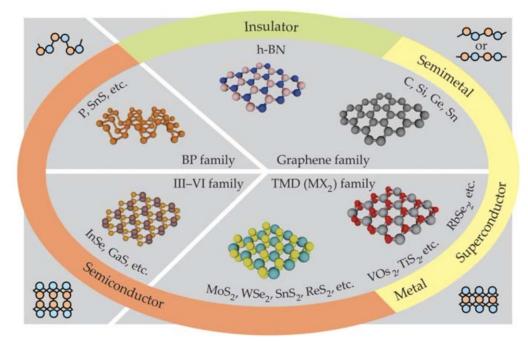
Barnes W et al., Nature, 2003 (10.1038/nature01937)





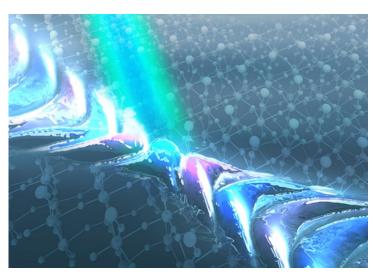
van der Waals (2D) materials

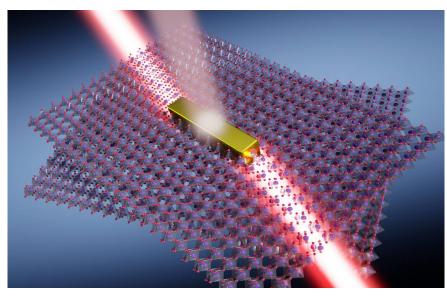
- ➤ Strong (covalent) forces in atomic plane and weak (vdW) forces between planes
- First kind discovered (unexpectedly) was graphene
- ➤ All types of properties and structures
- ➤ Polaritons have greater coupling in 2D materials thanks to reduced electrical screening

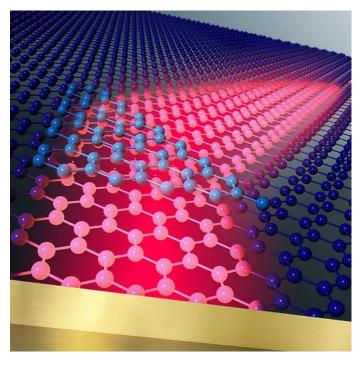


P. Ajayan y col., Physics Today 69, 38-44 (2016)

Counterintuitive phenomena

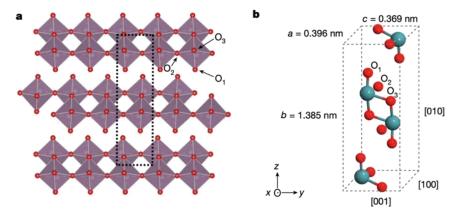






Hyperbolic light-matter propagation

Molybdenum trioxide in alpha phase (α - MoO_3)

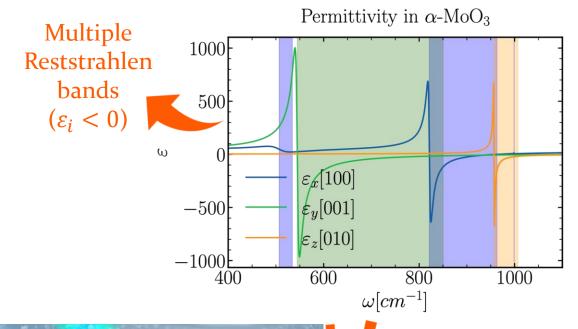


Weiliang Ma; P. Alonso-González et al., Springer Nature, 2018 (10.1038/s41586-018-0618-9)

➤ Light-matter hyperbolic propagation in the plane

 $\varepsilon = \varepsilon_0$

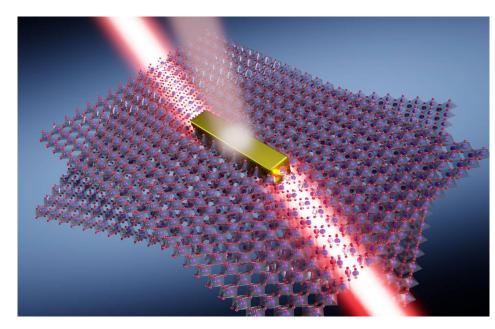
Scalar



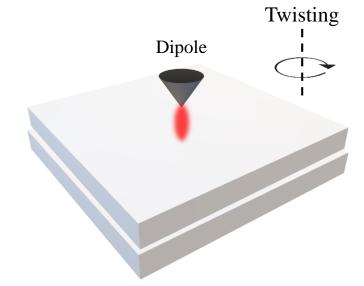
Tensor

Light natural canalization

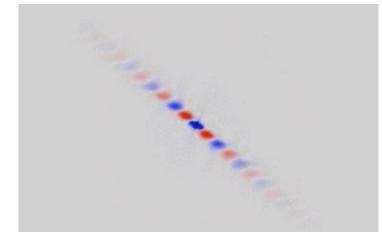
- **➤ Twistoptics** → Light-matter interaction in rotated 2D materials
- ➤ Phonon polaritons' (PhPs) propagation can be modified from open (hyperbolic) curve to close (circular) curve
- ➤ Light natural canalization
- "Diffraction-less" propagation



Jiahua Duan et al., Nano Letters, 2020 (10.1021/acs. nanolett.oco1673)

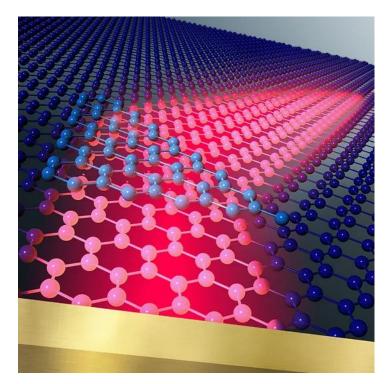


$$d_1 = d_2 = 200 \ nm \rightarrow \theta = 63^{\circ}$$

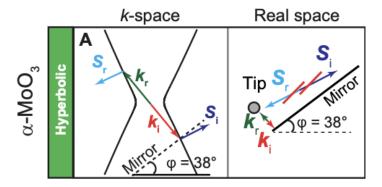


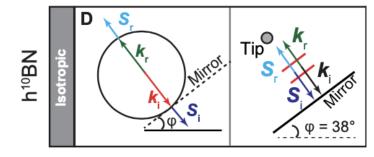
Negative and back reflection

- ► Back reflection → Light reflects in same direction and opposite sign as incident light $\Delta \vec{k} \equiv \vec{k}_{\parallel}^r \vec{k}_{\parallel}^i = 0 \rightarrow |\vec{k}_r| \sin \theta_r = |\vec{k}_i| \sin \theta_i$
- ➤ Usually demonstrated in artificially engineered interfaces, such as metasurfaces
- Recently visualized in high anisotropic materials in atomic plane

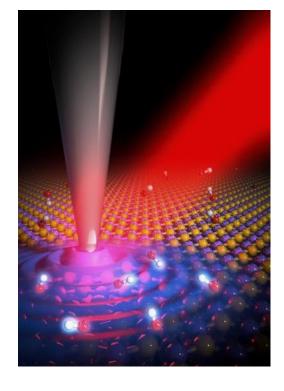


Reflection of phonon polaritons (by courtesy of Quantum Nano-optics Lab at the University of Oviedo)





G. Álvarez-Pérez et al., Science Advances 8, 2022 (10.1126/sciadv.abp8486)

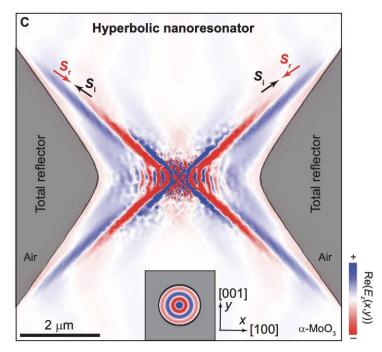


Nature, Volume 15 Issue 3, March 2021

Applications

Nanochemistry → **Hyperbolic mirror**

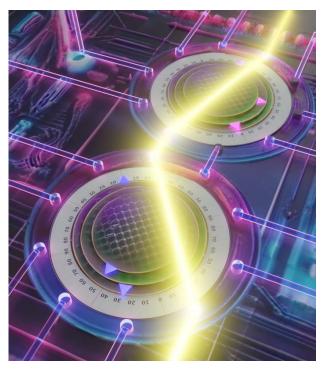
- Reflecting all incident phonon polaritons back to their source
- ➤ Intensity and, in principle, temperature increasement
- Experimental research in progress



G. Álvarez-Pérez et al., Science Advances 8, 2022 (10.1126/sciadv.abp8486)

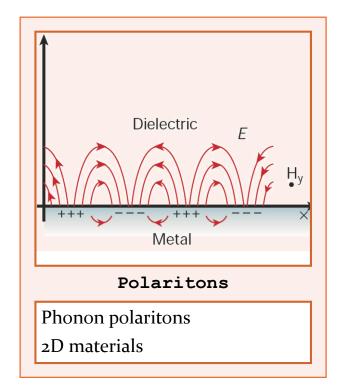
Quantum computing → **Light propagation direction**

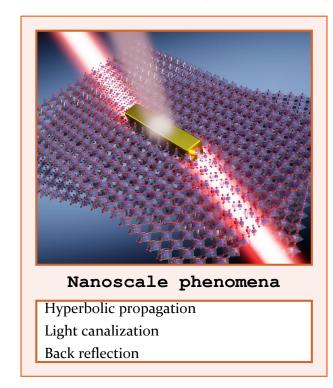
- Programmed in-plane canalization direction
- Demonstrated both analytically and experimentally with systems of three layers
- Entanglement of quantum emitters

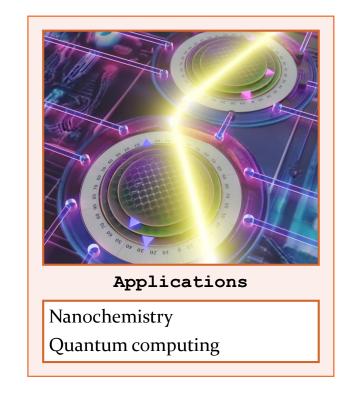


Light manipulation concept (by courtesy of Quantum Nano-optics Lab at the University of Oviedo)

Conclusions







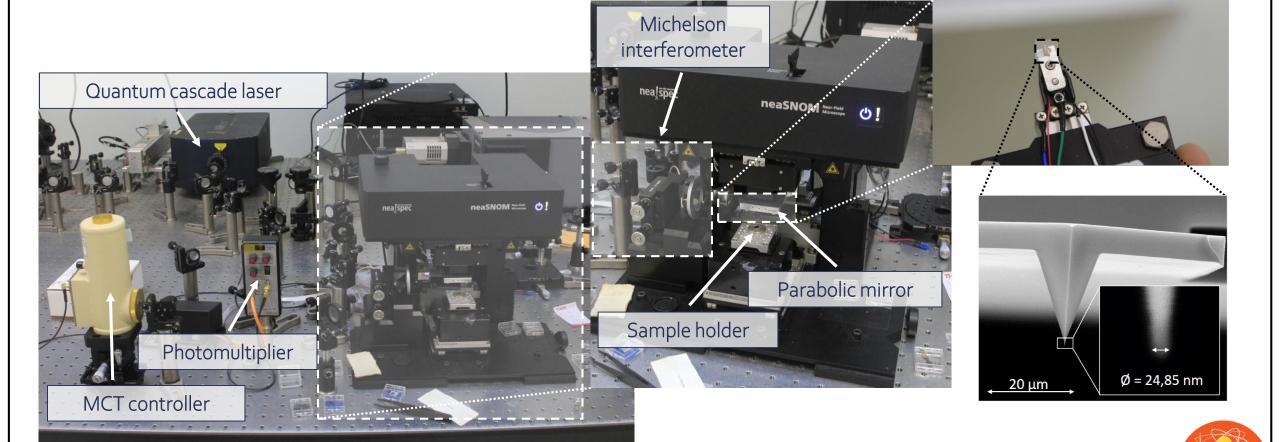
Dr. Pablo Alonso González

Post-PhD Aitana Tarazaga Martín-Luengo

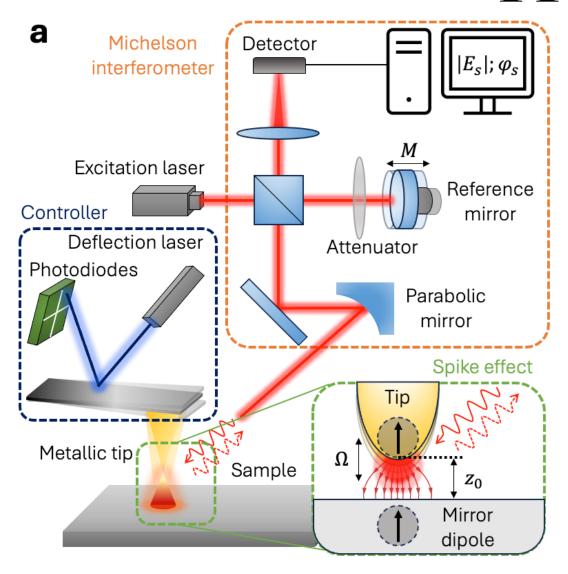
Thank you for your attention

Appendix

sSNOM: the nanometer viewer



Appendix



sSNOM: the nanometer viewer

- ➤ **Spike effect** → Field enhancement
- **Controller** → Responsible for tip contact
- ➤ Michelson (asymmetrical) interferometer
 - → Background field + Near-field signal + Reference beam + Noise (uncertainty)

$$I = |E_{nf}|^2 + 2|E_{nf}||E_{bg}|\cos(\varphi_{nf} - \varphi_{bg}) + 2|E_{nf}||E_{ref}|\cos(\varphi_{nf} - \varphi_{ref}) + E_{noise}^2$$

- > *Tapping* method oscillates the tip vertically
- Reference field also oscillates harmonically to modulate signal phase
- ➤ Signal demodulation gives us the harmonic orders of our desired contribution (preferably 3rd and 4th harmonic orders)

Appendix

Polariton's derivation from Maxwell's equations

Maxwell's equations

Constitutional equations

Electric permittivity

$$\left\{egin{array}{l}
abla \cdot ec{D} = 4\pi
ho \ \
abla \cdot ec{E} = -rac{1}{c}rac{\partial ec{B}}{\partial t} \end{array}
ight.$$

$$\nabla \cdot \vec{H} = -\frac{4\pi}{c}\vec{J} + \frac{1}{c}\frac{\partial \vec{D}}{\partial t}$$

$$\begin{cases} \nabla \cdot \vec{D} = 4\pi\rho & \nabla \cdot \vec{B} = 0 \\ \nabla \cdot \vec{E} = -\frac{1}{c}\frac{\partial \vec{B}}{\partial t} & \nabla \cdot \vec{H} = -\frac{4\pi}{c}\vec{J} + \frac{1}{c}\frac{\partial \vec{D}}{\partial t} & \text{Homogeneous} \\ \text{materials} \end{cases} \begin{cases} \vec{J} = \sigma \vec{E} & \vec{B} = \vec{H} \\ \vec{D} = \varepsilon \vec{E} & \longrightarrow \\ \vec{B} = \mu \vec{H} & \text{Non-magnetic} \\ \vec{B} = \mu \vec{H} & \text{materials} \end{cases} \varepsilon = \text{Re}(\varepsilon(\omega)) + i \text{Im}(\varepsilon(\omega))$$

Fresnel's momentum equation
$$\vec{k}^{2}(\varepsilon_{x}k_{x}^{2}+\varepsilon_{y}k_{y}^{2}+\varepsilon_{z}k_{z}^{2}) - \frac{\omega^{2}}{c^{2}} [k_{x}^{2}\varepsilon_{x}(\varepsilon_{y}+\varepsilon_{z})+k_{y}^{2}\varepsilon_{y}(\varepsilon_{x}+\varepsilon_{z})+k_{z}^{2}\varepsilon_{z}(\varepsilon_{x}+\varepsilon_{y})] + \frac{\omega^{4}}{c^{4}}\varepsilon_{x}\varepsilon_{y}\varepsilon_{z} = 0$$

$$TE \text{ propagation mode not possible!} \qquad \vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;z})e^{i(\vec{k}_{i}\vec{r}-i\omega t)}$$

$$\vec{H_{i}} = (0; H_{i;y}; 0)e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}}$$

$$\vec{E_{i}} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{i}E_{i;x}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = \frac{\omega}{\varepsilon_{z}} \varepsilon_{z}$$

$$\vec{E_{i}} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z} = (E_{i;x}; 0; \pm E_{i;x})e^{i(\vec{k}_{i}\vec{r}-i\omega t)} \qquad ik_{1;z}$$

Boundary conditions
$$D_{1;z} = D_{2;z}$$
; $E_{1;xy} = E_{2;xy}$

$$\overrightarrow{E_i} = (E_{i;x}; 0; \pm E_{i;z})e^{i(\overrightarrow{k}_i\overrightarrow{r} - i\omega)}$$
ve
$$\overrightarrow{H_i} = (0; H_{i;y}; 0)e^{i(\overrightarrow{k}_i\overrightarrow{r} - i\omega t)}$$

$$\frac{1}{k_{1;z}} = -\frac{k_{2;z}}{\varepsilon_2}$$

$$\frac{k_{1;z}}{\varepsilon_2} = -\frac{k_{2;z}}{\varepsilon_2}$$

$$k_{SPhP} \equiv k_x = \frac{\omega}{c} \sqrt{\frac{\varepsilon(\omega)}{1 + \varepsilon(\omega)}}$$

$$\mathbf{k}_{SPhP} \equiv \mathbf{k}_{x} = \frac{\boldsymbol{\omega}}{c} \sqrt{\frac{\boldsymbol{\varepsilon}(\boldsymbol{\omega})}{1 + \boldsymbol{\varepsilon}(\boldsymbol{\omega})}}$$
 wave condition
$$\boldsymbol{\varepsilon}(\boldsymbol{\omega}) = \boldsymbol{\varepsilon}_{\infty} \left(1 + \frac{\omega_{LO}^{2} - \omega_{TO}^{2}}{\omega_{TO}^{2} - \omega^{2} - i\gamma\omega} \right)$$

