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MHD INSTABILITIES IN SHEAR FLOWS OF
ANISOTROPIC COSMIC PLASMAS. I. FIRE HOSE

MODES
N. S. Dzhalilov, J. H. Samadov

Ministry of Science and Education of the Republic of Azerbaijan, N.Tusi Shamakhy Astrophysical Observatory, Shamakhy, Azerbaijan

The stability of the anisotropic collisionless plasma layer to small disturbances in the MHD description is studied based on moment equations
obtained from the Vlasov kinetic equation taking into account the heat flow along the spatially shearing flow. To find the complex spectral
parameter that determines the growth rate of instability, on the base of the obtained wave equation, the boundary value problem is solved
using WKB approximation for the case of a smooth hyperbolic velocity profile. A general integral dispersion equation, based on these
solutions is obtained. This equation describes all types of body and interface instabilities in the presence of heat flow along the magnetic
field, well studied for infinite stationary and homogeneous anisotropic plasma. It is shown that reducing the layer width greatly enhances the
mirror instability, and strongly suppresses the oblique fire-hose instability. We limited ourselves here to study how the spatial gradient of the
plasma flow affects the properties of an aperiodical oblique fire-hose instability in a limited layer. It was found that the spatial gradient in flow
velocity greatly enhances this instability. With a narrowing of the shearing layer width and an increasing of the velocity gradient, the body
hose modes transform into surface Kelvin-Helmholtz modes existing on the interface between the two parts of the flow with the different
velocities.
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APPLICATION AND ACTUALITY
Space Weather and Its Impacts

Satellite Operations
Power Grid Stability
Communications Systems
GPS Accuracy

Fusion Energy Research
Tokamak Design Improvements
Plasma Instability Control

Astrophysical Phenomena
Stellar Evolution
Interstellar Medium Dynamics
Cosmic Ray Propagation



What is MHD?
Magnetohydrodynamics (MHD) is a theoretical framework that
combines fluid dynamics with electromagnetism to describe the
behavior of electrically conducting fluids. It merges Maxwell's
equations of electromagnetism with the Navier-Stokes equations of
fluid dynamics, incorporating the effects of magnetic fields on fluid
motion and vice versa. MHD equations account for phenomena such as
magnetic pressure and tension, frozen-in flux, and the generation of
Alfvén waves. This theory is crucial for understanding various natural
and laboratory plasma systems, including the solar wind, fusion
reactors, and astrophysical objects like stars and galaxies.



WHAT IS SOLAR WIND?
Solar wind is a continuous stream of charged particles, primarily electrons and protons, flowing outward from the Sun's corona
into interplanetary space. It plays a crucial role in shaping the heliosphere and influencing space weather. Solar wind varies in
density, temperature, and speed, affecting how it interacts with planetary environments.
Causes:

Driven by the Sun's high-temperature corona and magnetic field dynamics.
Coronal holes and solar flares contribute to variations in solar wind intensity.

Types (by Velocity):
Fast Solar Wind: Originates from coronal holes and moves at speeds of 500–800 km/s.
Slow Solar Wind: Emanates from the Sun's equatorial regions and moves at speeds of 300–500 km/s.

Particle Composition and Sizes:
Composed mostly of electrons and protons, with traces of heavier ions such as helium.
Particle sizes range from individual protons and electrons to larger ion clusters.

Effects on the Solar System:
Influences Earth's magnetosphere, causing phenomena like auroras.
Affects satellite operations and communication systems.
Plays a role in shaping planetary atmospheres and tails of comets.



SCHEMATIC REPRESENTATION OF
MHD PLASMA SHEARING FLOW.

(1)

In the right figure Schematic representation of MHD plasma shearing flow.
Different line profiles correspond to different values of σL = σL in Eq.1                                 

Here V(−∞) = V01 and V0(+∞) = V02 are the limit velocities and let h =
V01/V02 ⩾ 1, V0(0) = (V01 + V02)/2 =  ̄V0 is the average of the two veloci-
ties. In the ((35)) the σ parameter characterizes the thicknesses of the
transition layer L. Figure  shows schematically the various profiles of V0(x)
for different values of σ. As the parameter σL > 0 increases, the width of the
transition layer between the two flows sharply decreases and becomes a
discontinuity (σL ≫ 1) between the velocities V01 and V02 (indicated by the
solid line in Fig. 1). For the small σL ≪ 1 the width of the transition layer
becomes very large.



(2) (3)

This equation represents the fundamental wave equation for the perturbed magnetic field component Bx in a sheared anisotropic plasma flow. It is
derived from the linearized 16-moment fluid equations, incorporating effects of pressure anisotropy and heat flows. The coefficients A(x) and
β_A(x) encapsulate the complex interplay between various plasma parameters, including the flow velocity profile, pressure anisotropy, heat fluxes,
and wave propagation angle. This equation forms the basis for studying stability properties of the plasma, particularly for analyzing various types
of instabilities such as firehose and mirror instabilities in the presence of velocity shear.

METHOD

WKB SOLUTION
So, for the complex P(τ ), Q(τ ) ⇒ C2(I) functions assuming Re(QP ) ≥ 0 we can write the leading expansion term of WKB solutions,

(6)

(4) where,

(5)



The dependence of instability growing rate Ωi of fire-hose
modes on the shearing rate of plasma super- sonic flows ∆
at different values of λn (numbers at curves) when σL = 1.

The dependence of instability growing rate Ωi of fire hose
modes on the λn at different values of σL (numbers at the
curves) when  ∆ = 1.5

The dependence of instability growing rate Ωi of fire-hose
modes on the shearing rate of plasma super- sonic flows ∆
at different values of σL (numbers at curves) when λn = 1

In this study, we examine how instabilities change when the flow is sheared, specifically focusing on oblique fire-hose modes. The key parameters considered are the anisotropy parameter \(\alpha = 0.5\), the magnetic
parameter β = 0.1, the propagation angle parameter l = 0.9, the heat flux parameter γ = 0, and the Mach number M = 5 (supersonic flow). Two additional parameters, ∆ and σL, are introduced to the problem, requiring the
solution of a complex integral dispersion equation.  We analyze the dependence of the fire-hose instability growth rate on ∆\ for various values of λn and σL. 
λn is The ratio of the wavelength λ in the (y-z) plane to the geometric width (2L) of the plasma layer with a flow. This parameter is influenced by the number of unevenly located nodes n of the eigenfunctions along the x-
axis. If (λx = 2L/n) represents the scale of fluctuation structures caused by shear flow along the x-axis and σL is the Characterizes the thickness of the transition layer L.  

Dependence on ∆ for Various λn and σL:
 Figures illustrate that even a slight shift in velocity (∆) significantly intensifies the instability, reaching a maximum quickly. For small λn, even a minor shift enhances the instability sharply. A similar trend is observed with
the σL parameter. At small scales of the velocity gradient (σL->0), the flow remains almost uniform, and the instability is weak. As the gradient increases, the instability rises sharply  and also we are show from figures the
dependence of the fire-hose instability growth rate (Ωi) on the parameter λn for different values of ∆ and σL. The analysis covers both wide plasma layers (kL ≫ 1) and narrow layers (kL ≪ 1). Hose modes that arise in a wide
layer as body waves disappear as the layer width decreases and approaches zero. The discontinuous case corresponds to L-> 0 and σL ≫ 1.
In conclusion, our results highlight the significant impact of velocity shifts and transition layer gradients on the fire-hose instability in plasma shearing flows, providing valuable insights for understanding and controlling
these instabilities in practical applications.

NUMERIC RESULTS
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